

DOI: 10.6653/MoCICHE.202406 51(3).0008

陳婉甄*/社團法人中華民國工業安全衛生協會新北技術服務處 副處長 張智奇/勞動部勞動及職業安全衛生研究所 研究員

我國營造業墜落職災數偏高,其中墜落災害死亡的占比將近7成。防墜安全設施在設置及使用上, 存在性能及強度不足的問題,同時也是造成墜落職災的關鍵主因之一。本文強調對防墜安全設施進行檢 驗的重要性,以提高工地墜落事故的預防效果。

前言

營建工程常見的高風險作業項目,包括鋼構作業、施工架作業、電梯井相關作業以及臨開口等高架作業,墜落災害發生的比率很高。為預防人員自高處墜落,這些作業項目通常都會使用到安全母索、中間桿柱、先行扶手框、防墜系統以及錨錠裝置等安全設施。為有效預防營建工程墜落災害的發生,本文針對防墜直接相關的安全設施,包括先行扶手框、錨錠裝置及護欄等,探討相關安全設施在設置、使用階段的性能需求,及確保安全性的必要檢驗。

安全設施使用現況分析

有鑑於我國營造業墜落職災數偏高,且比例未能 有效降低四,因此職安署設定今(113)年為「營造業 墜落打擊年」,以彰顯降低造業墜落職災的決心四。根 據勞動部職安署統計顯示,112年全產業在工作場所重 大職災死亡人數約280餘件,其中營造業就占比約一 半,而其中墜落災害死亡的占比就將近7成,為歷年 營造業重大職災類型之首。另外根據勞安所針對營建 工程墜落危害所提出之關鍵要因四,依歷年職災統計, 分析媒介物、作業內容、災害情形及頻率的重複性 等,提出營建工程墜落災害最主要的關鍵要因包括: 配置不當、本體防護不足或無安全設施及性能及強度 不足等。其中「性能及強度不足」主要包含防墜安全 設施的問題,若能針對此關鍵要因,整合資源妥善運 用,當能有效預防墜落災害的發生。

防墜安全設施不完備或有效性不足,每每造成重大職業災害,案例包括:勞工從事垃圾管道間作業,未設置防墜措施導致墜落死亡(如圖1所示)^[4]、勞工從事電梯井工作平台拆除作業,發生墜落致死(如圖2所示)^[5]、勞工從事鋼構組配作業,於鋼梁上行走時,因重心不穩墜落,而墜落時因安全母索兩端錨錠之黃色中間桿柱鎖固強度不足,連同安全母索及中間桿柱一併扯落並墜落至地面(如圖3所示)^[5]、新建鋼

圖 1 垃圾管道間作業自開口墜落 [4]

^{*} 通訊作者,cwj@mail.isha.org.tw

圖 3 安全母索及中間桿柱一併扯落並墜落至地面 [5]

圖 4 鋼構廠房墜落,母索及中間桿柱無效而脫落 [4]

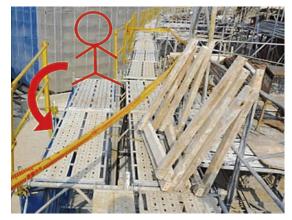


圖 5 施工架先行扶手框鬆脫造成人員墜落 [6]

構廠房勞工從事屋頂浪板安裝作業時,安全母索未設置堅固的錨錠裝置,造成二名勞工自高度約31公尺墜落至地面不治身亡(如圖4)所示[4]、勞工於外牆施工架從事模板收料及搬運作業,左手扶著長向先行扶手框時,因長向先行扶手框鬆脫,致由4樓墜落至地上1樓地面不治身亡(如圖5所示)[6]。

由營建工程現場訪視發現 ^[3],設置或使用中的安全 設施,通常多無法有效防止墜落災害的發生或降低墜落 災害的嚴重性,尤以鋼構作業時使用安全母索及中間桿 柱(錨錠)等做為安全設施,其強度及性能明顯不足; 框式施工架組拆過程,需採用先行扶手框做為防護設 施,多數扶手框設置後常有鬆脫、翻落等問題;外牆施 作時,施工架與構造物間,以設置長條型安全網做為防 止人員墜落的設施,但其強度及攔截效能有疑慮;電梯 井開口多數會以柵欄做完全封閉的防護,但當必須進行 吊料或清潔作業時,多半未再設置摛墜系統或所設置的系統與錨錠裝置的強度不足。上述幾種墜落防護設施的強度明顯不足,但業界仍頻繁使用,且多為工地現況使用之標準配備。直接的安全設施無法滿足防墜需求,可能是造成營建工程墜落災害偏高的重要原因,相關安全設施現況與問題綜整如表 1 所示 [3]。

防墜安全設施選用、設置、使用管理要點

由職災案例分析及現場訪視的結果顯示 [3],目前 營建工程所使用之安全設施本身的強度及性能多有疑 慮,加上現場設置的方法不正確及設置位置不當等問 題,是造成安全設施無法發揮安全防護功能的主因, 因此需要進一步就安全設施的設置進行妥善規劃,並 針對安全設施的性能與強度進行檢驗。以下各階段管 理要點說明如下:

	缺失類型	常見缺失樣態		
安全設施現況問題	設置不當、不完備, 導致墜落開口	1. 護欄下端開口過大 2. 施工架端部開口未確實封阻 3. 電梯井上方開口過大未全面遮斷 4. 樓梯轉折平臺處開口,未設護欄 5. 管道間開口,未設護蓋或設置護蓋強度不足 6. 筏基坑覆蓋,未設置警示措施 7. 其他		
	尺寸、型式錯誤選 用,導致性能不足	1. 電梯井吊料作業所設之單點錨錠強度不足 2. 施工架作業設置之水平母索材質採用棉繩 3. 構構作業所使用之母索、黃色中間桿柱,本身構件性能不足 4. 長條型安全網無法有效欄截 5. 其他		
	連結、鎖固未確實, 導致系統失效	1. 先行扶手框未確實鎖固連結,造成鬆脫 2. 護欄杆柱距超過 2.5 公尺,造成晃動不穩固 3. 安全設施構件鏽蝕及變形,致無法確實連結 4. 其他		

表 1 營建工程安全設施常見缺失類型與樣態

防墜安全設施的選用

為確保正確選用,應根據作業環境和工程需求, 選用適合的防墜安全設施,以確保其符合作業需求並 能提供有效保護。

- (1) 選用適合特定工程需求和環境條件的安全設施,需 考慮到工程的特性、高度、工作類型等因素,選用 具有足夠強度與性能適當的防墜安全設施。
- (2) 進行法規標準的查核與確認,以確保所使用之安全 設施的設計、安裝和使用符合法規、國家標準以及 相關行業標準。

防墜安全設施的設置

為確保完備設置,應在可能發生墜落的地方,完 備各項安全設施,以提供有效的保護。

- (1) 防墜安全設施的設置,須確認構件本身強度、構件 連結強度,並設置足夠數量,才能充份發揮安全設 施的防護功能。
- (2) 安全設施的設置所採用構件,應確認材質正確、尺寸及強度符合法規或相關規範。
- (3) 應使用適當的連接構件及固定方式,如使用不合適 的連接件或固定方式,可能使安全設施失去預期的 功能,於人員墜落或受外力影響時,可能因強度不 足而失效。
- (4) 構件須確實依設計方式施作並鎖固,以確認整體系 統的穩定(完整性和穩固性)。

防墜安全設施的使用

為確保有效使用,各項墜落預防的安全設施必須 經過適當的「檢驗」,以確認其防護效能,包括目視檢 視及性能檢測,使用者應於作業前檢視整體設置完備 性,並可依現場的需求及條件,進行安全設施的性能檢測。

- (1)檢視:為現場相關人員,應具備基礎知識與能力, 以目視及現場簡易評估的方式,確認安全設施有無 明顯生鏽、變形之情形,或是因螺絲鬆動、連接件 破損,導致晃動不穩固之情形。
- (2) 檢測:依據工程需求及條件的不同,可以要求負責 提供安全設施之業者、或請具專業之技術團體經由 第三方輔導稽核及抽測 ^[7],以確認構件性能及強度 符合設計所需(即現場執行抽樣並進行測試)。

防墜安全設施的檢驗

防墜安全設施的檢驗,主要為確保安全設施構件的功能符合設計所需的強度,且能夠有效防止墜落危害。因此現場檢驗分為檢視及檢測,主要的重點即在於確認防墜安全設施的完備性及有效性。為有效確認安全設施的性能,除了透過加強作業人員之職能訓練來達成正確使用的目的外,可以配合由防墜安全設施的專業分包制度,委由專業廠商進行安全設施的施作,來確認安全設施在選用、設計及安裝的正確性。此外,也可以藉由第三方技術團體的稽核驗證,協助確認相關安全設施是否正確選用與使用。本文優先針對營造工地必要且經常使用之防墜設施,包括先行扶手框、護欄及錨錠裝置等,納入防墜設施的檢驗探討。使用者若能有效掌握各項防墜安全設施的防護原理,可依據工地現場各工項實際使用狀況及所使用的安全設施項目,依據功能需求自行修訂,如表2所示。

表2 安全設施檢驗項目參考表

	驗目	檢視	檢測	備註
先行 扶手框		 扶手框生鏽、變形 扶手框型式 扶手框尺寸 扶手框設置間距 扶手框連結鎖固程度 	静態測試 動態測試	提供測試證明 現場抽測
護欄		1. 護欄生鏞、變形 2. 護欄設置高度 3. 杆柱設置間距 4. 護欄連結鎖固程度	拉力測試	現場抽測
錯錠	單點錨錠	1. 構件生鏽、變形 2. 錨錠尺寸大小 3. 錨錠點設置高度 4. 錨錠設置方式	拉拔測試	提供測試證明 現場抽測
	中間桿柱	不適用	不適用	現況使用之黃色 中間桿柱,無防 墜功能

先行扶手框安全設施檢視及檢測

作用

建築工程中必須設置施工架,在施工架組裝、拆 解作業時,輔以先行扶手框做為安全工法時,可以防 止勞工自施工架墜落,同時提供安心的工作環境。

常見問題

先行扶手框目前使用多為公、母扣型式,設置後與 施工架的鎖固及連結不牢靠,加上多次使用、重覆組拆 容易變形,可能造成人員墜落或扶手框飛落等危害。

檢視與項目

檢視先行扶手框選用的型式及尺寸是否符合場域,以及是否有附性能測試證明;設置時扶手框是否 有生鏽、變形情形;扶手框間距等是否造成墜落開 口;扶手框連結鎖固程度。

檢測項目

先行扶手框的構造標準及試驗方法可參考勞動部 職業安全衛生研究所「施工架之扶手先行工法安全作 業技術指引」^[8],並已將該指引針對先行扶手框的構造 要件及測試方法之主要內容納入,供業者依循。先行 扶手框之性能試驗方法如下:

(1) 靜態測試 – 確認先行扶手框強度可以做為施工架組 拆臨時性護欄。

靜態測試主要是瞭解先行扶手框承受側向時的最大變位值,以確認防護功能是否足夠。首先,先行扶手框施以30公斤之水平拉力,其變位不得超過10公分;而後,施以100公斤水平拉力並靜置30秒,其變位不得超過45公分,測試方式及測試結果如圖6所示。

(2) 動態測試 – 確認先行扶手框能具勾掛安全帶之必要強度及性能。

動態測試主要是確認作為鉤掛安全帶使用之先行 扶手框,在質量 100 kg 之沙包以及 170 cm 之安全繩, 以距離地板上緣 90 cm 之位置做為重錘之懸吊處,並讓 先行扶手框之固定部分為左右對稱之掉落位置自由落 下,確認先行扶手框與掛具是否未折損或脫落,且墜 落之沙包未接觸地面,以符合先行扶手框動態安全強 度測試,測試方式及測試結果如圖 7 所示。

護欄安全設施檢視及檢測

作用

做為墜落開口的遮斷,在開口的邊緣設置護欄, 可以有效防止人員或物品從邊緣飛落。

圖 6 静態測試前後照片 [7]

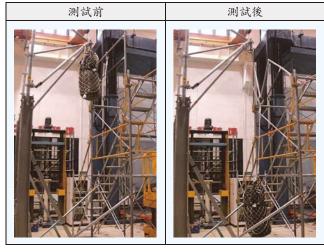


圖 7 動態測試前後照片 [8]

常見問題

- (1) 護欄設置高度不足,除未達 90 cm,也未考量作業 場域需求,增加高度及強度等。
- (2) 錨錠強度不足及整體穩定性不佳,當意外碰撞時, 無法承受撞擊力。
- (3) 護欄未適當設置,使用及維護時因便利性不足,可 能被人員任意拆開。

檢視與檢測項目

- (1) 檢視欄杆設置,具有高度 90 公分以上之上欄杆、 中間欄杆或等效設備(以下簡稱中欄杆)、腳趾板 及杆柱等構材;其上欄杆、中欄杆及地盤面與樓 板面間之上下開口距離,應不大於 55 公分。
- (2) 檢視構件無顯著變形、生鏽情形,並確保整體系 統穩固。
- (3) 拉力測試

為確保任何型式之護欄的強度足夠且穩固,其杆柱、杆件之強度及錨錠,應使整個護欄具有抵抗於上欄杆之任何一點,於任何方向加以七十五公斤之荷重,而無顯著變形之強度。

錨錠(中間桿柱)安全設施檢視及檢測 作用

做為全身背負式安全帶鉤掛之單點錨錠,或做為 安全母索兩端及中間通過點的錨錠。

常見問題

單點錨錠常因設置方式、設置點及尺寸等問題, 造成強度不足。而安全母索兩端及中間通過點的錨 錠,目前工地普遍使用的黃色中間桿柱,由於強度不 足,無法達到有效的安全防護,甚至會有安全上的錯誤認知。

◎ 現況使用之黃色中間桿柱,因構件本身及錨錠強度 均不足,因此不納入檢驗項目。

檢視項目

單點錨錠:檢視材質與尺寸的選用是否適當;錨 錠設置的方式及錨錠點設置的高度;錨錠構件是否生 鏽及變形等情形。

檢測項目

錨錠點強度可藉由現場的拉拔試驗,確認其強度能符合 2,300 公斤的需求,安全母索可由檢附之材料說明書及現場取樣及拉力試驗,確認其性能能符合 2,300 公斤的需求。

結論與建議

落實防墜安全設施的檢驗是保障作業人員安全的關鍵。事前正確選用、場域的完備設置和確認功能有效發揮,能預防職業災害並避免不必要的法律責任,透過檢驗,可提升安全設施的可靠性與功能的發揮,保障作業人員的安全。

為有效確保安全設施能發揮防護效果,建議加強作業人員對安全設施選用、設置及目視檢測的能力,並配合由防墜安全設施的專業分包制度,委由專業廠商進行安全設施的施作,來確認安全設施在選用、設計及安裝的正確性。此外,藉由第三方技術團體的稽核驗證,可提供客觀評估,以確保安全設施的正確使用,進而保障作業人員在場域上的安全,降低墜落災害發生的風險。

參考文獻

- 1. 勞動部職業安全衛生署:中華民國 111 年勞動檢查統計年報; 111 年 8 月。
- 2. 勞動部職業安全衛生署,新聞稿: https://www.osha.gov.tw/, 113/02/27。
- 3. 張智奇、陳婉甄 (2023), 營建工程墜落關鍵危害要因分析與預 防對策研究, 勞動部勞動及職業安全衛生研究所。
- 4. 桃園市政府勞動檢查處,營造業職災實錄:https://oli.tycg.gov.tw/ News Content.aspx?n=8513&s=1251858, 113/03/20。
- 5. 勞動部職業安全衛生署・職災訊息: https://www.osha.gov.tw/
 48110/48417/lpsimplelist, 113/03/20。
- 6. 臺北市勞動檢查處(2010),臺北市職業災害案實錄彙編;第8期。
- 7. 張智奇、湯大同(2021),「臨時構造物第三方稽核制度推動與可行性評估」,勞動部勞動及職業安全衛生研究所。
- 8. 張智奇、徐增興(2012),施工架之扶手先行工法安全作業技術 指引,勞動部勞動及職業安全衛生研究所。