勘災與技術報

蔡益超/國立臺灣大學 名譽教授 宋裕祺/國立臺北科技大學 特聘教授 廖芝荑/國立臺北科技大學 碩士生

> 建築物在地震中因弱層而倒塌的情況相當嚴重,113年頒布的建築物耐震設計規範2.17節對檢核弱層有 嶄新的規定。本文特別介紹耐震能力初評系統 PSERCB 弱層檢核,就是發展一套符合規範要求的檢核弱層與 各層耐震能力的系統,可幫助從業設計工程師處理弱層的問題。本文先介紹評估的原理及方法,也有示範例 說明實際操作結果,最後提出評估結果的標準,判定是否安全及後續是否應進行詳細評估及補強作業。

前言

台灣地處環太平洋地震帶上,地震發生頻仍,中大地 震造成人員及財物損失時有所聞。由於人們活動的場所泰 多都在建築物內,因此人員傷亡主要肇因於建築物倒塌。 如是,如何提高建築物的耐震能力成為刻不容緩的議題。

建築物要能耐震,最上游就是有良好的耐震設計, 此乃奠基於有優良的耐震設計規範。我國建築物耐震設 計規範歷經多次修訂,已堪稱完備。民國86年頒布的 耐震設計規範有重大的變革,除設計地震力的計算有嶄 新的形式之外,對避免弱層亦有規定。揆諸國外規範, 對檢核弱層均未有著墨,此乃我國規範之特點之一。

所謂弱層,就是該層極限剪力強度特別低,當地 震來襲時,弱層率先降伏,僅靠弱層來消散地震輸入建 築物的能量,很快弱層的韌性告罄,弱層崩榻,其上諸 樓層重量將其壓扁,就如同圖1所示維冠金龍大樓破壞 的慘狀、圖2因0403地震所造成的花蓮天王星大樓倒 塌。弱層通常發生在一樓,因一樓常有較開放空間的需 求,有些牆未下一樓,且通常挑高及設計餘裕度較低, 但如圖3所示,也可能發生在一樓以上樓層。

既有建築物因當時耐震設計較不成熟,一般耐震能 力偏低,如果能進行耐震能力評估,將耐震能力低下的

圖1 台南維冠金龍大樓 (資料來源:自由時報、Google map 街景服務)

圖 2 花蓮天王星大樓倒塌 (資料來源:施忠賢理事長提供)

圖 3 日本 1995 年阪神地震中間弱層 (資料來源: PIXTA 圖庫資料 - 阪神地震)

建築物找出來,該補強的補強,該拆掉的拆除,則下次 地震侵襲時,自然能降低人員與財產的損失,是可行的 工程手段。不過由於老舊建築物數量龐大,根據國內多 年來實施的實務,分初步評估與詳細評估兩階段,示意 圖如圖4。初評有疑慮者須進入詳評,詳評不通過者要 補強或拆除。

本文將論述者為初評弱層檢核系統,不但能檢 核出何處屬弱層,也可求各層的耐震能力,此系統稱 為 PSERCB 弱層檢核^[1],其實是建置在內政部多年的 PSERCB 系統^[2]的擴充版,原 PSERCB 僅評估底層,因

圖 4 建築物耐震能力評估流程

此只能評估一樓是否為弱層,且評估所用的定義略有別 於 113 年 2.17 節的定義^[3]。PSERCB 弱層檢核則完全符 合最新規範 2.17 節對弱層檢核的標準。

本文第二節將說明 PSERCB 弱層檢核方法;第三節 探討一示範例;第四節建議整個耐震能力評估的流程與 標準;第五節有簡單的結論。

PSERCB 弱層檢核方法

建築物某一層抵抗地震力的構材,以鋼筋混凝土建築物而言,主要為柱、RC 牆與磚牆。耐震能力評估第 一步就要求得此些構材的極限剪力強度,茲分述如下:

柱、RC 牆與磚牆之極限剪力強度

柱在極限狀態下,柱端與柱底會產生塑性彎矩,其 值與柱所受軸力P_a有關,計算如下:

$$P_{ni} = \frac{W_D + \frac{1}{2}W_L}{\sum A_{coli} + \sum A_{RC}} \times A_{coli}$$
(1)

其中, W_D 為該樓層所受全部靜載重, W_L 為該樓層所受 全部活載重, A_{coli} 為某根柱之斷面積, A_{RC} 則為某片 RC 牆之斷面積。

此後,根據柱尺寸與配筋,就可算得塑性彎矩,惟要注意拉力鋼筋之降伏強度要乘1.25倍。如此柱產生彎 矩破壞對應的剪力強度 V_{m coli}如下:

$$V_{m,coli} = \frac{W_{CT} + M_{CB}}{h_l} \tag{2}$$

其中 M_{CT}與 M_{CB}分別為柱頂與柱底之塑性彎矩, h₁為柱 淨高。

柱亦可能產生剪力破壞,其剪力強度 V_{sui}如下:

$$V_{sui} = 0.53 \sqrt{f_c'} B_c D + \frac{A_v f_{yv} d}{s}$$
(3)

	RC 柱極限剪	力强度修正係數↓	
$\frac{V_{sui}}{0.9V_{m,coli}}$ 範圍	$\frac{V_{sui}}{0.9V_{m,coli}} \le 0.75$	$0.75 < \frac{V_{sui}}{0.9 V_{m,coli}} \le 1.0$	$\frac{V_{sui}}{0.9V_{m,coli}} > 1.0$
修正係數 \$	0.75	$\frac{V_{sui}}{0.9V_{m,coli}}$	1.0

表1 RC 柱極限剪力強度修正係數 φ

其中, A_v 為一組箍繫筋總斷面積, f'_c 為混凝土抗壓強度, B_c 為柱寬,D為有效深, f_{yv} 為箍筋降伏強度。最後柱之極限剪力強度 V_{coli} 如下:

$$V_{coli} = min \left(V_{m,coli} , V_{sui} \right) \times \phi$$
(4)

RC 牆之極限剪力強度 V_{swi} 計算如下:

$$V_{swi} = (0.53\sqrt{f_c' + \rho_t f_y})T_b W_b$$
(5)

其中 ρ_t 為橫向鋼筋比, T_b 為牆厚, W_b 為牆長度。對於 小於等於 15 cm 厚的非結構 RC 牆, 其極限剪力強度折 半計算。對短柱而言, 亦視為 RC 牆處理。

磚牆之極限剪力強度 V_{bwi} 請參照 PSERCB 手冊第三版2.2.2節,分四面圍束、三面圍束、無側邊圍束計算之。

柱、磚牆與 RC 牆間耐震行為之關係

地震由小漸次變大的過程中,勁度最大的 RC 牆 (*j*=1)先抵抗地震,其後隨著側向變位增加,磚牆 (*j*=2)與構架(*j*=3)陸續參加抵抗地震行列。當 RC 牆強度、韌性完全發揮後,如果地震再大,那就要 看磚牆強度、韌性完全發揮後,如果地震再大,那就要 看磚牆強度、韌性瓷全發揮後,如果地震再大,那就要 看磚牆強度、韌性瓷全發揮後,如果地震再大,那就要 看磚牆強度、韌性瓷全發揮後,如果地震再大,那就要 看磚牆強度、韌性瓷全發揮後,如果地震再大,那就要 看磚牆強度、韌性瓷全發揮後,如果地震再大,那就要 看磚牆強度、韌性瓷全發揮後,如果地震再大,那就要 看磚牆強度、韌性瓷資揮後,如果地震再大,那就要 看磚牆強度、韌性完全發揮後,如果地震再大,那就要

三種構材強度與韌性發展的過程不一,首先要解決 其中一種構材韌性發揮後,其他兩種構材強度與塑性變 形發展百分比的問題。因此吾人對三種構材在頂部加水 平地震力,求算其位移,直到塑性變形用盡。此結果如 圖5所示。

此圖中 X 軸取變位除以高度,稱為無因次轉角,而 Y 軸取剪力強度最大值為 1.0 之無因次值。所以當 RC 牆塑性變位完成時,三種構材強度發揮的百分比分別為 85%、98% 與 66%,如圖 6 所示。

圖 5 三種構材非線性側推結果

圖 6 RC 牆塑性變形發揮後各構材強度產生百分比

同理,三種構材塑性變形的百分比,如圖7所示, 分別為100%、37%與5%。

其他兩種情況茲不贅述,最後結果見如下矩陣表 (表2)。表中有三種構材在 $j = 1 \sim 3$ 下對應的強度發 展係數 $C_{vsj} \times C_{vbj} \times C_{vcj}$ 與塑性變形發展係數 $C_{Rsj} \times C_{Rbj} \times C_{Rcj}$ 。

表 2 C_{vsj} 、 C_{Rsj} 、 C_{vbj} 、 C_{Rbj} 、 C_{vcj} 與 C_{Rcj} 之建議表

	j	<i>j</i> = 1	<i>j</i> = 2	<i>j</i> = 3
V	C_{vsj}	0.85	0	0
V swi	C_{Rsj}	1.0	0	0
V_{bwi}	C_{vbj}	0.95	0.85	0
	C_{Rbj}	0.37	1.0	0
V	Cv_{cj}	0.65	0.95	1.0
V coli	C_{Rcj}	0.05	0.58	1.0

各樓層極限剪力強度與該樓層結構等值韌性 容量

各樓層極限剪力強度 Vui 計算如下:

$$V_{uj} = \left[C_{vcj}\sum V_{coli} + C_{vsj}\sum V_{swi} + C_{vbj}\sum V_{bwi}\right] \times \phi_{pl} \times \phi_{fa}$$
(6)

由於結構物平面與立面不對稱性影響耐震能力頗 鉅,因此對尚可者,兩修正係數取值0.95,對不良者取 值0.85 折減之。

整體結構等值韌性容量 R_j*之計算式因為很長,詳 見 PSERCB 手冊第三版 (2-24) 式。惟對各構材韌性容量 之使用按下列建議表 (表 3)。

表3 R_{col}、R_{sw}及R_{bw}建議表

設計年度	R_{col}	R_{sw}	R_{bw}
63年2月以前	2.4	2.0	3.0
63年2月至71年6月	3.2	2.0	3.0
71年6月至86年5月	4.0	2.0	3.0
86年5月以後	4.8	2.0	3.0

弱層檢核係數

弱層檢核係數將完全按照規範 2.17 節的定義來實施。

首先,要計算各層設計層剪力 V_{di},按照耐震設計 規範地震力豎向分配計算之。地震設計總橫力 V 如何分 配至各層,依下式計算:

$$F_{x} = \frac{(V - F_{t})W_{x}h_{x}}{\sum_{i=1}^{n}W_{i}h_{i}}$$
(7)

 F_x 為作用在第 x 層的設計地震力, W_x 為第 x 層靜 載重, h_x 為第 x 層距基面之高度。至於 F_t 為作用於頂層 外加地震力,用以考慮基本振態外其他振態的影響。當 基本振動週期大於等於 0.07 秒時才需考慮,否則其值為 0。 F_t 以下式計算:

$$F_t = 0.07TV \tag{8}$$

F_t不必大於 0.25V,而公式 (7) 顯然係將總橫力扣 除頂層外加地震力後進行分配,但最後頂層地震力不要 忘掉須將 F_t加進去(見圖 8)。

圖8 計算各樓層分配之側力F_x

各層設計層剪力係將該層以上所有地震力加總,如 下式(見圖9):

$$V_{d,i} = F_t + \sum_{j=i}^{n} F_j$$
(9)

● 設計層剪力V_d

以長週期結構來說,假如分析一6樓建築物,其各樓層所承受之設計層剪力如下。

計算i樓之設計層剪力 $V_{d,i}$,其值為i樓以上(包含i樓)之側力總和(創i樓之設計 層剪力)。

$$V_{d,i} = F_i + \sum_{j=i}^n F_j$$

弱層檢核係數 Cweaki 按規範定義如下(見圖 10):

$$C_{weak,i} = \frac{\left(\frac{V_{u,i}}{V_{d,i}}\right)}{\left(\frac{V_{u,i+1}}{V_{d,i+1}}\right)}$$
(10)

圖 10 弱層檢核係數 Cweak

弱層判定條件

某一層是否為弱層的判定條件當然是 C_{weak,i} < 0.8, 但仍有些例外。建築物的設計,一般來說越下面的樓層 餘裕度較小,上面的樓層餘裕度較大,所以下半樓層先 進入塑性變形,亦即塑鉸產生後,上面樓層往往沒有機 會降伏,共同去抵抗消耗地震輸入的能量。因此吾人定 義一個參數,稱為 C_{beneath} 如下(見圖 11):

$$C_{beneath,i} = \frac{\frac{V_{u,i}}{V_{d,i}}}{\left(\frac{V_u}{V_d}\right)ave}$$
(11)

而分母如下:

$$\left(\frac{V_u}{V_d}\right)ave = \frac{\sum_{k=1}^{\frac{n}{2}} \frac{V_{u,k}}{V_{d,k}}}{\frac{n}{2}}$$
(12)

其物理意義為下半樓層極限剪力強度與設計層剪力 比值的平均數, n 為建築物樓層數。

• 檢核各樓層Cbeneath

 $C_{beneath}$ 代表各樓層之『極限剪力強度/設計層剪力」 $\left(\frac{v_{y_{\ell_{x}}}}{v_{\ell_{x}}}\right)$ 與建築物下半部樓層之「極限 剪力強度/設計層剪力」 $\left(\frac{v_{y_{\ell_{x}}}}{v_{\ell_{x}}}\right)$ 之平均值 c_{ag} 之比值。

如果某層極限剪力強度與設計層剪力比值超過 1.3 $\left(\frac{V_u}{V_d}\right)^{ave}$,即便 $C_{weak,i} < 0.8$ 亦無需認定其為弱層。即不 必視為弱層的條件為:

$$C_{beneath,i} > 1.3 \tag{13}$$

另外如某層極限剪力強度超過2500年回歸期最大 考量地震造成的彈性層剪力時,亦不必檢核弱層。即使 Cweeki< < 0.8 亦無需認定其為弱層。寫成數學式如下:

$$A_{y,i} \ge A_{2500} \tag{14}$$

$$\overline{\text{m}} A_{2500} = 0.4 S_{MS} \circ$$

此處第 i 層降伏地表加速度以下式計算(見圖 12):

$$f_{y,i} = \frac{V_{u,i} \left(\frac{V_{u,1}}{V_{d,i}}\right) S_{DS}}{2.5 S_{aD} W_D}$$
(15)

圖 12 檢核各樓層降伏地表加速度 A_{vi}

綜上所述,判定弱層有下列三個條件,通通成立, 才判為弱層(見圖13)。

(1)
$$C_{weak,i} < 0.8$$
 (16)

(2) $C_{beneath,i} < 1.3$ (17)

$$(3) A_{y,i} \ge A_{2500} \tag{18}$$

↑ 既有建築物:若耐震能力符合規定,即各樓 <u>A.2</u> ≥ 1.0,則無須檢核弱層。

 檢核各樓,若同時滿足:
 反之,若不滿足其中一項,

 (1)C_{weak} < 0.7</td>
 (2) C_{beneath} < 1.3</td>
 (3) A_y LA₂₅₀₀ < 1.0</td>

 代表該層爲弱層。
 則該層不視爲弱層。

 新建建築物:耐震能力須符合規定,即各樓均滿足 <u>A_{c1}</u>≥1&<u>A_{c2}</u>≥1, 另外須檢核弱層。

檢核各樓,若同時滿足: (1)C_{weak} ≤ 0.8 (2) C_{beneath} ≤ 1.3 (3) <u>A</u>_j ≤ 1.0 (3) <u>A</u>_j = 1.0 (3) <u>A</u>_j

71

示範例

本示範例為6樓RC造,建物基本資料見圖14,各 樓結構平面圖見圖15。材料強度及各層靜、活載重請見 參考文獻^{11]}。各層柱尺寸及配筋亦見參考文獻^{11]},X向 與Y向RC牆長度與厚度請見參考文獻^{11]}。由此些圖說 可知一樓因做為停車空間,RC牆全打除。此建築物也 因此在一樓產生弱層,在地震中倒塌。

經 PSERCB 弱層檢核,其結果如圖 16 所示。由此 圖可看出不論 X 向或 Y 向,一樓都為弱層,而其他樓 層則無弱層。以 X 向來看, $C_{weak} = 0.6605$,小於 0.7; $C_{beneath} = 0.7349$,小於 1.3; $A_y/IA_{2500} = 0.1340$,小於 1.0。此三個條件一應俱全,所以可判為弱層,而該層 $A_{c2}/IA_{475} = 0.4620$ 未達耐震標準。也就是說,如在地震 前評估,此建築物應屬不及格,其評定標準俟第四節 說明。 本案如在地震前評估如上述為不及格,並有弱層, 那就要進行補強,參考文獻口提出兩種補強方法,一為 補 RC 牆,另為擴柱。補 RC 牆者因將一樓破壞模式由構 架破壞(*j*=3)變成 RC 牆主導破壞(*j*=1),因此雖能消 除弱層,但耐震能力增加不多,仍未能達到規範標準, 即*A_{c2}/IA₄₇₅*≥1.0。因此以下擬說明採擴柱補強之結果。

新頒建築物耐震設計規範第八章,對既有建築物的 耐震能力訂得較新建建築物者為低,即韌性全發揮後, 其耐震能力達 IA₄₇₅ 就可。

有關擴柱補強,挑5根柱補強,其位置如圖17所示。擴柱採外包覆鋼筋混凝土為之,詳細補強細節如圖18所示。補強後重新評估後的結果如圖19所示,此圖顯示不論X向或Y向均無弱層,*C_{weak}分別等於1.2332*與1.0236,均超過0.7,而X向的*A_{c2}/IA₄₇₅*=1.1573,達 到規範要求;Y向*A_{c2}/IA₄₇₅*=0.9882,勉強算通過。

項目	資訊				
建築物名稱	六層樓案例				
建築概述	地上6層總樓地板面積: 1642.08 m ²				
構造總類	鋼筋混凝土造				
X向尺寸	15.79 m (柱心)				
Y向尺寸	22.95 m (柱心)				
使用用途	1F爲公用停車空間、2~6F爲住宅 用途係數(I): 1.0				
工址位置	花蓮縣花蓮市				
地質概述	第二類地盤				
設計採用之規範	71年6月至86年5月				
建築物總樓高	23.6 m				
各樓層高度	1F: 5.6 m 2F ~ 6F: 3.6 m				
樓層面積	1 ~ 6F : 273.68 m ²				

圖 14 建築基本資料

圖 15 各層結構平面圖

分析結	課 SERC ^{核總表}	B弱層	鬙檢核	結果					弱版 X向有1版 Y向有1限	層數量: 層,位在1樓; 層,位在1樓。
				X 向					Y向	
樓層	Cweak	$C_{beneath}$	$\frac{A_y}{IA_{2500}}$	A _{C2}	A _{C2} I A ₄₇₅	Cweek	$C_{beneath}$	$\frac{A_y}{IA_{2500}}$	A _{C2}	$\frac{A_{C2}}{IA_{475}}$
	0.6605	0.7349	0.1340			0.5649	0.6592	0.1179		
1 楼	NG!		0.2070	0.4620		NG!		0.1646	0.3675	
A 14	0.9652	1.1125	0.2029	0.4004	0.0120	0.9939	1.1668	0.2087	0.4207	0.0(11
2 接	OK!		0.4094 0.9139		OK!		0.4500	0.9011		
a. 14	0.9121	1.1526	0.2102			1.0410	1.1740	0.2100	0.4352	0.9714
3 楼		OK!		0.4068	0.9081		OK!			
	0.8420	1.2636	0.2305			0.8288	1.1278	0.2018		
4 楼	OK!		0.4209	0.9396		OK!		0.3644	0.8133	
-	0.8246	1.5007	0.2737	A 1005		0.7730	1.3607	0.2434		
5 楼		OK!		0.4925	1.0993		OK!		0.4185	0.9342
2 H	1.0000	1.8199	0.3462			1.0000	1.7603	0.3149		
0 楼		OK!		0.6877 1.535	1.5351		OK!		0.6525	1.4565

 $\texttt{it}: @C_{weak} < 0.70 \cdot \texttt{A} \\ \texttt{K} \\ \texttt{if} \\ \texttt{M} \\ \texttt$

(Cor

案例分析-案例補強方法二:擴柱補強 ● 建築物補強資料 728-於1樓C1柱、C4柱 共計5根柱進行擴柱補強

柱編號	數量
C1	3
C4	2

原柱名稱	1FC1	1FC4
擴柱名稱	New-1FC1	New-1FC4
擴柱厚度	10	10
擴柱橫向箍、繫筋號數	#4	#4
擴柱橫向箍、繫筋根數	2	2
擴柱箍筋間距	10	10
擴柱主筋號數	#7	#7
擴柱主筋根數	24	24
擴柱混凝土抗壓強度	280	280
擴柱保護層厚度	4	4
擴柱主筋降伏強度	4200	4200
擴柱箍筋降伏強度	2800	2800

圖 18 擴柱補強斷面資訊

擴柱補強斷面資訊

P	0	0	0 0	0	0	-
P	۴	35	0500	20	9	14
•	p-b	1			9	1
•	and	-			000	
	No.				-8	

New-1FC4

٣	0	0 0	0 0		9
Þ.	φ.	IPS 29	29	9	d
Þ	P			C	q
þ	20			0.50	q
Þ	82	bz scl	se		9
62	0	0 0	0 0	0	٦

分析	分析結果									
- \	PSERCB弱層檢核結果 X向與Y向在補強後 均無弱層現象									
各層樓檢	各層複檢核總表									
				X向			-		Y向	
樓層	Cweak	$C_{beneath}$	$\frac{A_y}{IA_{2500}}$	A _{C2}	$\frac{A_{C2}}{IA_{475}}$	C_{weak}	$C_{beneath}$	$\frac{A_y}{IA_{2500}}$	A _{c2}	$\frac{A_{C2}}{IA_{475}}$
1樓	1.2332	1.1317 OK!	0.2502	0.5185	1.1573	1.0236	1.0136 OK!	0.2137	0.4427	0.9882
	0.9652	0.9176	0.2029			0.9939	0.9902	0.2087		
2楼	OK!		0.4094 0.9139		OK!			0.4300	0.9611	
a. Ib	0.9121	0.9507	0.2102			1.0410	0.9962	0.2100	0.1050	0.0714
3 復	OK!		0.4068 0.9081		OK!		0.4352 0.97			
4.18	0.8420	1.0423	0.2305	0.4200	0.0206	0.8288	0.9570	0.2018	0.2644	0.0122
4 後		OK!		0.4209	0.9396	OK!			0.3644	0.8133
F 14	0.8246	1.2378	0.2737	0.4025	1.0002	0.7730	1.1547	0.2434	0.4105	0.0242
5楼		OK!		0.4925	1.0993	OK!		0.4185 0.9	0.9342	
6.18	1.0000	1.5011	0.3462	0.6977	1 5251	1.0000	1.4938	0.3149	0.6525	1.4545
口楼		OK!		0.6877 1.5351		OK!		0.0525	1.4565	

Acz耐震能力控制樓層:4樓

圖 19 擴柱補強評估結果

圖 20 將耐震能力 Ac2/IA475 换算成危險度評分

耐震能力評估的流程與標準之建議

國內有關建築物耐震能力評估,早在 921 地震後就 開始實施。行政院於中華民國 89 年 6 月 16 日核定「建 築物實施耐震能力評估及補強方案」,從公有與防救災 相關的建築物如消防隊、衛生所、警察局開始。其後慢 慢發展出先做初評,後做詳評的模式。目前 PSERCB 初 步評估系統建置在內政部,許多專案如「建築物耐震能 力詳細評估共同供應契約」、「安家固園」、「建築物公共 安全檢查簽證及申報辦法」、「住宅性能評估辦法」、「都 市危險及老舊建築物加速重建條例」與「都市更新耐震 能力不足建築物而有明顯危害公共安全認定辦法」等有 關建築物耐震能力初步評估均採用此系統。對於需要進 一步進行詳細耐震評估者,SERCB 詳細評估系統業已經 過內政部認證可以使用。

鑒於中大地震弱層建築物倒塌情形屢見不鮮,雖然 弱層建築物數量可能僅佔全體建築物的20%,但因其耐 震能力特低,所以中大地震倒塌的建築物幾乎都是弱層 建築物。PSERCB 弱層檢核系統已經開發完成,能完全 符合耐震設計規範2.17節有關弱層檢核的所有規定,因 此建議將 PSERCB 弱層檢核系統儘速完成內政部認證程 序,使整個建築物耐震能力評估體系趨於完整。

由於 PSERCB 初步評估系統已完成無數建築物的初 評工作,因此尚不便將 PSERCB 弱層檢核系統取代,因 此謹建議如下處理程序。

首先,將要初評的建築物交由 PSERCB 弱層檢核系統檢查是否有弱層存在,如無,則交由 PSERCB 初步評 估系統再評估,以取得跟以往初評過的建築物具相同基 準。如發現有弱層,但耐震能力 A_{c2} 已達 IA₄₇₅者,可視 為耐震能力尚無疑慮。但如發現有弱層,而耐震能力 A_{c2} 小於 IA₄₇₅者,可進行 SERCB 詳評,如還是未達 IA₄₇₅ 者,就要進入補強或拆除程序。

以 PSERCB 初評對結果的判定處理程序,請見表 4,PSERCB 弱層檢核與 SERCB 詳評系統可得建築物的 耐震能力 A_{c2},如欲換算成分數,可以見圖 20。即 A_{c2}/ IA₄₇₅分別等於 0.775、0.6625 及 0.55,其對應的危險度 評分分別為 30、45 與 60 分。

表4 耐震能力初步評估結果之判定表

耐震能力初步評估結果之判定						
$R \leq 30$	建築物耐震能力尚無疑慮					
$30\!<\!R\!\leq\!45$	建築物耐震能力稍有疑慮,宜進行詳評					
$45 < R \le 60$	建築物耐震能力有疑慮,優先進行詳評					
R > 60	建築物耐震能力確有疑慮,逕自進行補強或拆除					

結論

- 弱層是地震時建築物倒塌的主因之一,如能評估出 來加以補強,消除弱層後,耐震能力可大幅提高。
- 2. 我國建築物耐震設計規範 2.17 節,規定須檢核弱層,不容許產生弱層,此乃我國規範特色之一。
- PSERCB 弱層檢核系統可檢核是否有弱層存在,完 全滿足規範弱層的定義,以及考慮非結構牆及各抵 抗地震力構材不同時候達其極限剪力強度現象。
- PSERCB 弱層檢核系統可適用在新建建築物及既有 建築物的弱層檢核及各層耐震能力的計算,使用方 便,有完整輸出資料供判讀。

參考文獻

- . 蔡益超、宋裕祺(2023),「PSERCB 弱層檢核-理論背景與系統 操作」(第二版)。
- 宋裕祺、蔡益超(2023),「鋼筋混凝土建築物耐震能力初步評估 PSERCB - 理論背景與系統操作」(第三版)。
- 3. 內政部,中華民國 113 年 1 月,「建築物耐震設計規範及解說」。