0403 花蓮地震 勘災與技術報告

游忠翰/國家地震工程研究中心 副研究員 汪向榮/國立臺灣科技大學營建工程系 教授 彭聖凱/國家地震工程研究中心 專案助理研究員 林旺春/國家地震工程研究中心 副研究員 榜卓諺/國家地震工程研究中心 副研究員 曾育凡/國家地震工程研究中心 專案佐理研究員 陳禧耘/台灣隔震科技有限公司 總經理 柯宗滕/台聯工程顧問股份有限公司 協理 柯鎮洋/台聯工程顧問股份有限公司 董事長 張國鎮/國立臺灣大學土木工程學系 教授

0403花蓮地震對於台灣東部至西北部區域造成了嚴重影響,對於位在這些區域的隔震建築,更是首次 面臨如此大規模的地震。透過震後的詳細勘查,確認多數隔震建築皆無結構性損傷,僅有因隔震運動所引 致跨越隔震間隙的非結構元件損傷。然而,未來仍需強調地震中使用者人身安全,以及隔震系統長期維護 的重要性。此外,本文針對台灣大學土木研究大樓(中間樓層隔震),以及花蓮慈濟醫學中心合心樓(基 礎隔震),進行詳細的結構勘查、深入探討監測資料、並進行數值模型非線性動力歷時分析,以進一步驗 證其隔震效益。分析結果顯示,此兩棟隔震建築在本次地震中的實際反應與設計預期結果相符。

概述

台灣位於板塊交接處,在地狹人稠的島嶼上分佈了高 達 36 條長短不一的活動斷層口,致使長年頻繁遭受大小 不一的地震侵襲,其對於天然環境、建築、橋梁、交通與 民生設施等所造成的災禍屢見不鮮,政府與人民皆因此付 出了相當慘痛的經濟損失與生命安全代價。鑑於頻繁的地 震活動為台灣無法避免的宿命,耐震技術的發展一直是國 內的重要課題與方向,在產官學研界的努力下,現今相關 技術、規範與政策的推動以及其衍生之實際應用成效位列 於全球前緣,其中隔震(seismic isolation)技術的發展與 應用更為翹楚。根據過往實際案例的驗證,採用隔震技術 之建築物,至今經歷了大大小小無數的地震後,可以有效 保護結構,使其不會產生結構性的損傷,非結構元件與重 要設備在地震中,均可正常運作或僅有相當輕微的損壞, 完好維持建物預期的設計功能。

國內隔震技術之蓬勃發展與應用始於 1999 年九二 一大地震後,第一個有關建築物隔震設計的規範於 2002 年出版^[2],並於 2005 年公告施行之「建築物耐震設計規 範及解說」^[3]中,新增了「隔震建築物設計」章節,許 多先期的隔震技術應用案例以政府與公共建築物為主, 包含醫院以及政府災害應變中心等重要功能性建築物。 爾後,於 2011 年公告施行之「建築物耐震設計規範及 解說」^[4]中,因應地域條件與國際發展,針對隔震建築 之設計與試驗方法進一步修訂。隔震技術發展至今,已 廣泛應用於許多住宅與商業大樓等私有建物,以確保 建築物於震中與震後之功能維持。根據概略統計,國 內隔震建築至今已有超過兩百個案例^[5]。隔震設計之 優異性能歸因於其重要基本概念,即透過延長結構週 期,避開地震主要振動頻率範圍,以達到大幅降低地 震影響程度之目的。此外,規範中有特別強調,隔震 建築的上部結構在設計地震下不得產生降伏、在最大 考量地震下降伏程度不得超過容許韌性容量,非結構 元件與設備在設計地震下須正常運作無損壞、在最大 考量地震下不能產生嚴重損壞且仍能維持運作。由上 述可知,採用隔震技術不僅可以顯著提升建物的耐震 能力,更確保了在震中與震後建物的功能性與非結構 元件的完整性,大幅降低震中對於居住者的人身安全 威脅,以及震後所需之修繕與恢復成本,有效提升社 會之震後韌性與復原力。

本文探討之0403花蓮地震,根據中央氣象署公告 資料,發生於台灣時間 2024 年 04 月 03 日早上 7 時 58 分09秒,震央地點位於花蓮縣外海(花蓮縣政府南南 東方 25.0 公里), 芮氏規模為 M₁7.2。本次地震影響最 大的區域為台灣的東部及西北部,其中震度最大的地 區為花蓮縣和平鄉,其高達6強,其次為震度6弱的 花蓮市,而大台北地區也有高達5弱的震度。根據國 家地震工程研究中心(National Center for Research on Earthquake Engineering)的分析統計^[6],本次地震最 大地表加速度發生於太魯閣測站(ETL),其值為1491 gal (南北向);此外,依據 Shahi and Baker ^[7] 對於近斷 層地震之判斷準則,共有14個測站發現近斷層速度脈 衝之現象,其區域廣佈自花蓮、宜蘭至竹南、梨山, 而其脈衝週期範圍則自1.5秒至4.0秒。根據過往地震 經驗與學理研究,近斷層地震的長週期脈衝,會造成 具有長週期特性之結構承受較大的地震能量,如高樓 或是隔震建築等,對於隔震建築而言,其可能造成的 過大隔震位移以及傾覆潛勢則是最需要關注的受震反 應。因此,於本次地震後,本文針對所勘查隔震建築 的隔震系統、結構連接桿件、非結構元件、以及受震 監測反應,進一步進行探討與研究。

國家地震工程研究中心,協同中華建築隔震消能 構造協會(The Chinese Society of Seismic Isolation), 於 0403 花蓮地震發生後,前往花蓮地區與大台北地 區,針對採用隔震技術之醫院、學校、政府機關與多 棟私有住宅進行會勘與訪查。由於部分建物資訊不便 於公開,因此就實際勘查結果歸納總結如下:(1)隔震 建築在本次地震中,即使遭遇近斷層或是較大震度之 地震,皆無結構性之損傷,隔震系統中的隔震元件與 阻尼器皆無受損;(2)相較於非隔震建築,隔震建築上 部結構中的非結構元件或是室內物品,幾乎無損壞發 生;(3)非結構元件之損傷主要集中於跨越隔震間隙的 構件,例如走道與車道之活動蓋板、懸吊式電梯與隔 震建築下部結構連接之活動蓋板、以及上部結構延伸 之裝修材,由於預留位移空間不足,與下部結構延伸 裝修材產生碰撞損壞;(4)隔震元件於防火蓋板間交界 位置,採用防火泥或其他軟性防火材料填補縫隙進行 防火區劃,然因隔震元件之運動導致材料破損或擠出; (5) 採用橡膠類隔震元件之隔震系統,會因為產生水平 隔震位移而導致垂直高度下降,若未於上、下部結構 延伸裝修材料(如:磁磚、石版、土壤植栽等)預留 足夠的垂直空間,將導致局部構材損壞,甚至在未來 可能發生的大地震中影響隔震功能;(6)填補上、下部 結構間隙的防水材料,通常為軟性防水材料或填縫樹 脂,部分案例為硬式的防水構造,其會因為隔震系統 的運動而遭到擠出、外翻或是變形;(7)承上,觀察到 部分建築隔震間隙的防水失效已久,導致隔震系統滲 水,造成部分鋼構件輕微生鏽,表面防水漆脫落;(8) 本次會勘中部分隔震建築於竣工後,安裝有加速規或 位移計等監測系統,但因為缺乏維護管理,導致電力 系統失效或是儀器失去功能,無法完整記錄本次地震 中的結構反應;(9)隔震系統因為發揮功能進入非線性 階段,致使部分隔震建物產生輕微的殘餘變位而無法 完美復位,然其為隔震功能發揮後之合理現象,並不 會對於未來之隔震性能造成影響。

再者,必須強調隔震建築周圍隔震間隙於地震過程 中的危險性,並且應普及針對一般民眾進行安全宣導。 於本次訪查的過程中,發現隔震建築的使用者普遍可以 認知到隔震設計的功效,並且了解到地震時隔震系統會 發生明顯運動,然而卻無法明確意識到其運動的程度。 甚至於監視器紀錄下發現有民眾於地震發生時,嘗試跨 越上、下部結構之間的樓梯,所幸因為隔震位移尚小 而沒有造成傷害。因此,地震發生當下應意識到快速 遠離可能發生危險的區域,其歸納如下:(1)前述之連 接上、下部結構的樓梯,地震時會在特定位置(依照 建築設計各有不同)產生錯動,可能會造成民眾意外 受傷或跌落;(2)採用懸吊式電梯系統時,下部結構會 採用活動蓋板橫跨隔震間隙,其通常於電梯端(與上 部結構同步運動)設置鉸接,於另一端則透過軌道於 指定方向上自由移動,因此當地震發生時,很可能對 過於靠近蓋板自由端外(下部結構)的民眾,造成肢 體捲入或撞擊等意外傷害;(3)同樣地,民眾也應該要 在地震過程中,於下部結構或地面時,避免靠近所有 與隔震建築上部結構共同運動的活動蓋板、延伸板、 裝修材料、或是管線等。然而,隔震建築往往為了美 觀,隔震間隙常難以分辨,或是透過裝修將其隱藏, 此種狀況會增加民眾於地震時意外受傷的風險。因 此,未來除持續加強宣導外,應該明確標示上、下部 結構之所有交界處與伸縮縫,並且標示警戒區域,提 醒民眾避免於地震過程中踏入;同時,相關裝修材料 也應該注意保留足夠的水平與垂直方向隔震間隙,避 免碰撞擠壓導致砸落而造成意外傷害。

此外,本次會勘亦意識到落實隔震建築定期維護 管理的重要性。隔震建築應訂定定期維護管理計畫, 例如:於每年實施定期檢查,針對建築、管線與隔震 系統元件進行目視與簡單量測點檢,確認是否有額外 物件阻礙隔震功能發揮,以及相關防水、防火措施是 否完善;每五年實施詳細定期檢查,針對前述所有部 分進行詳細量測,觀察是否有變形或傾斜,並且針對 所有隔震間隙進行詳細量測,確保有足夠的淨空間; 於地震發生後,若震度高於特定等級需進行臨時點 檢;若於臨時點檢或是年度常態點檢中發現有異常狀 況,則需進行詳細點檢。

最後,建議無論隔震建築是否安裝有加速規或 位移計,應於隔震層中安裝物理性的隔震位移軌跡紀 錄板,此種紀錄板通常採用不鏽鋼薄板固定於下部結 構,並於上部結構延伸一垂直、具有預壓彈簧與尖銳 筆尖的記錄筆抵住紀錄板,當隔震系統產生位移時, 筆尖會在紀錄板表面留下完整位移軌跡刻痕。此種紀 錄板無電子產品耐用性與耐久性的問題,可以直接記 錄地震當下隔震位移軌跡、顯示地震後的殘餘變位、 以及殘餘變位隨時間的回復狀況。由於位移紀錄板無 法如電子產品般記錄歷時數據,因此可以採用拍照記 錄之方式,於震後每隔一個時間區段便拍照記錄一 次,以區分主震、餘震、殘餘變位以及回復狀況,並 且於地震事件過後更換紀錄板,以隨時記錄下一次的 地震事件。紀錄板亦方便專業人員於點檢時,直接判 斷隔震系統的狀況;若專業人員於紀錄板上發現曾有 超過隔震設計位移的現象時,便可以針對隔震元件損 傷或是隔震間隙碰撞損傷等可能狀況加以詳細檢查。

本文除前述針對會勘與訪查結果進行歸納總結 外,另選取兩棟具有完整結構監測紀錄之代表性隔震 建築,進一步探討隔震建築於本次地震中之反應與地 震後之狀況。其中,第一棟為位於台北市的台灣大學 土木研究大樓,屬於中間樓層隔震建築;第二棟為位 於花蓮縣花蓮市的慈濟醫學中心急診大樓,屬於基礎 隔震建築。

台灣大學土木研究大樓

結構概述

台灣大學土木研究大樓(圖1(a))位於台北市大安 區辛亥路三段186號,為一預鑄鋼筋混凝土中間樓層隔 震建築,包含地下一層、地上九層、以及屋突二層,隔 震層位於二樓(2F,如圖1(b)),建築空間主要用途為土 木系實驗室、教授研究室、行政辦公室、學生研究室、 以及多功能教室。結構之一樓(1F)樓版(含)下方採 用場鑄工法,隔震層與一樓採用半預鑄工法,其上則採 用預鑄工法。在結構系統方面,上部結構為抗彎構架系 統,下部結構為抗彎構架與剪力牆之二元系統,採用數 道 600 mm 厚之剪力牆以增加下部結構之勁度,可使隔 震功能如預期不受下部結構影響 [8]。該建築於 2007 年 7 月開始進行設計規劃,當年度12月取得建照,2008年1 月開始動土,並於2008年6月取得使用執照。於基礎、 地下室(B1F)、隔震層等區域,部分需要進行場鑄的結 構完成後,地上層預鑄結構體僅使用 58 日即完成建造。 隔震系統(圖1(c))共採用19組同型號、直徑為900 mm的鉛心橡膠支承墊,以及於長向(longitudinal)與 短向(transverse)分別安裝有兩組與四組的液態黏性阻 尼器。每組鉛心橡膠支承墊中有兩支直徑為145 mm之 鉛心,橡膠總厚度為224 mm,每組阻尼器衝程為±500 mm、最大出力為100 ton、阻尼係數為101.9 ton/(sec/ m)^{0.6}、非線性指數為 0.6。對於整體隔震系統,初始勁度 為 39349 ton/m、降伏後勁度為 2850 ton/m、特徵強度為 552.9 ton (對應於上部結構總重 10122.6 ton,隔震設計之

啟動加速度值約為 60 gal),經計算可以得到隔震系統的 設計降伏力為 596.1 ton、降伏位移為 15.1 mm。

台灣大學土木研究大樓原依據 2011 年版的耐震設計規範進行設計,工址為台北三區(工址短週期設計水平譜加速度係數 $S_{DS} = 0.6$,工址短週期最大水平譜加速度係數 $S_{MS} = 0.8$,轉角週期 $T_0 = 1.05$ sec),相較於現行2024 年版耐震設計規範,工址修正為台北二區($S_{DS} = 0.6$, $S_{MS} = 0.8$, $T_0 = 1.30$ sec),原設計所採用之轉角週期較低,然而因隔震設計之有效週期遠大於轉角週期,因此影響程度較小。在不考慮阻尼器額外提供的阻尼效益下,於靜力分析中,設計地震等級下隔震系統的有效週期為 2.93 sec、隔震位移為 290 mm、有效勁度為 4750 ton/m、等效阻尼比為 24.2%;最大考量地震等級下隔震系統的有效週期為 3.14 sec、隔震位移為 430 mm、有效

勁度為 4123 ton/m、等效阻尼比為 19.0%。當上部結構 在固定基底的條件下,自然振動週期為 0.9 sec。隔震結 構設計不考慮阻尼器額外提供的阻尼效益,以最大考量 地震等級下所計算之水平總橫力,對於上部結構桿件進 行彈性設計,並以最大考量地震等級下所計算之水平總 橫力的 1.25 倍,對於下部結構桿件進行彈性設計。

0403 花蓮地震後會勘

0403 花蓮地震於台北市造成 5 弱的震度,為台灣大 學土木研究大樓竣工迄今所遭遇到的最大地震震度,因 此有必要於地震後進行詳細的目視檢查。於震後立即前 往現場會勘,確認本次地震對於結構與隔震系統皆無造 成結構性的損傷,但仍有少數可預期且可輕易修復的非 結構元件損傷發生,其皆為隔震系統發揮作用之正常損 傷。如圖 2(a) 所示,由於本隔震建築採用懸吊式電梯系 統,於隔震層下方電梯周圍所安裝之活動蓋板,可以觀 察到錯動的痕跡,例如電梯側面之蓋板底部發生些許擠 壓變形,以及地面之蓋板亦稍微擠壓到地磚,導致地磚 有些許的破損。另一方面,如圖2(b)所示,於上、下部 結構間填補縫隙的防水材料,因為隔震系統發揮作用, 導致防水材料被捲入,以及部分固定件鬆脫,對此應於 震後進行處理,以防止漏水情形發生。於隔震系統中, 所有隔震元件防火蓋板間的軟性防火材料,皆因隔震元 件的運動而遭到擠出(圖2(c)),此縫隙需要重新進行修 繕,否則將無法提供足夠的防火能力。

結構監測紀錄

台灣大學土木研究大樓一共安裝有27個加速規與 4 個位移計,加速規分別配置於地下一樓(B1F)、二樓 (2F,隔震層下方)、三樓(3F,隔震層上方)、六樓

(6F)以及頂樓(RF) 樓版,位移計則裝設於隔震層, 用以量測隔震層上、下樓版的相對變位(即隔震位移)。 加速規之配置,於地下一樓樓版的特定位置(圖3(a)), 安裝有長向、短向以及垂直向(vertical)各2個加速規 (CH1~CH6),並以此處所記錄之加速度歷時,作為整 體結構的輸入擾動依據;於二樓樓版(隔震層下方)裝設 1 個長向與 2 個短向的加速規(CH7~CH9,如圖 3(b)), 由於下部結構採用數道 600 mm 厚的剪力牆進行加勁, 垂 直向加速度與地下一樓之差異不大,因此未在此樓層安裝 垂直向加速規;於三樓樓版(隔震層上方)一共裝設了7 個加速規(CH10~CH16,如圖3(c)),其除了設置與地下 一樓相同位置與方向之加速規外,另多安裝了一個垂直向 加速規,以同時探討長向與短向可能的傾覆行為;六樓樓 版為上部結構立面上之中央位置,因此於六樓樓版的質心 附近,於長、短向各安裝一個加速規(CH17與CH18, 如圖 3(d));頂樓加速規之配置則與地下一樓相同。

(a) 懸吊式電梯活動蓋板

(c) 隔震元件防火蓋板

圖 2 台灣大學土木研究大樓隔震系統於 0403 花蓮地震下發揮作用所造成之非結構元件輕微損傷

長向、短向以及垂直向之加速度輸入歷時如圖 4(a) 所示,由圖中可以得知,短向的加速度峰值為90 gal, 其大於長向的 76 gal, 亦超過了四級震度的上限(80 gal)以及隔震設計啟動加速度值(60 gal),垂直向的加 速度峰值為 24 gal。觀察隔震系統的位移量測紀錄(圖 4(b)),長向與短向的最大隔震位移分別為21 mm與16 mm,長向的位移略大於短向的位移。根據過往研究¹⁹, 鉛心橡膠支承墊的降伏位移約在10mm至30mm之間, 且圖 4(b) 中顯示,兩方向皆無明顯隔震系統降伏後之殘 餘變位,因此判斷隔震系統於本次地震中仍應於初始啟 動之階段。此外,取位移紀錄中的最後10秒平均值減最 初10秒平均值,可發現隔震系統幾乎沒有殘餘變位,其 長向與短向的數值分別為 0.83 mm 與 0.60 mm。進一步 觀察加速度紀錄,選取位於同柱位的加速規量測紀錄繪 於圖 4(c),並且將各樓層長、短向之加速度峰值(非相 同時刻) 整理於表1。觀察表1上部結構(3F以上)的

100

加速度峰值,可以發現無明顯動力放大效應,僅在短向 之頂樓(RF)處有稍微放大的現象;在隔震性能表現方 面,觀察隔震層上方樓版與下方樓版之比值(3F/2F), 可以發現長向與短向的加速度分別有 21% (=1-79%)與 37%(=1-63%)的折减效率,此結果亦再次驗證了隔震 系統有初步發揮之效益;另外,於下部結構部分,由隔 震層下方樓版與輸入擾動之比值(2F/B1F),可以觀察到 有些許動態放大的現象。

表1 台灣大學土木研究大樓於 0403 花蓮地震下 各樓層加速度峰值統計整理

			(unit: gal)	
Floor RF 6F 3F		longitudinal	transverse 78 64 60	
		62		
		61		
		77		
	2F	97	95	
1	B1F	76	90	
RI	F / 2F	64%	82%	
6H	F / 2F	63%	67%	
31	F / 2F	79%	63%	
2F	/ B1F	128%	106%	

Ch. 1: longitudi

根據長向位移計記錄之最大隔震位移(21 mm), 以及前面結構概述中說明之隔震設計參數,可以計算 得到隔震系統長向的有效勁度為 29184 ton/m、有效週 期為 1.18 sec、由鉛心橡膠支承墊所提供的等效阻尼比 為 16.14% [10];且根據最大隔震位移可計算出,每組長 向的阻尼器可以提供4.86%之阻尼比(長向共安裝兩 組液態黏性阻尼器),因此整體系統長向在該最大隔震 位移下的等效阻尼比為 25.86%。另外,根據短向位移 計記錄之最大隔震位移(16 mm),其僅略大於降伏位 移(15.1 mm),因此計算得到短向的有效勁度為37413 ton/m、有效週期為 1.04 sec,其與彈性階段之設計參數 差異不大,由鉛心橡膠支承墊所提供的等效阻尼比僅為 3.31%;然由於短向安裝有四組液態黏性阻尼器,每組 可以提供 4.56% 的阻尼比,因此整體系統短向在該最大 隔震位移下的等效阻尼比為 21.55%。分別繪製長、短向 5% 阻尼比之輸入擾動反應譜,以及依據前述各別於最 大隔震位移下等效阻尼比之反應譜,如圖5所示。由圖 5 可知,在長、短向各自對應之有效週期與等效阻尼比 下,其譜加速度值分別為 81 gal 與 99 gal,分別與長、 短向實際量測值(76 gal 與 99 gal)相近;而長、短向 之譜位移值皆為25mm,亦分別與長、短向實際量測值 (21 mm 與 16 mm)相近,由此可驗證隔震設計參數與 實際表現特性相符。

數值模型分析

以台灣大學土木研究大樓地下一樓於 0403 花蓮地 震下的加速度量測紀錄作為輸入擾動加速度歷時,採

圖 5 台灣大學土木研究大樓於 0403 花蓮地震下不同阻尼比 之輸入擾動加速度與位移反應譜

用商業軟體 ETABS 進行非線性動力歷時分析。將數 值模型適度考慮結構與非結構牆體的影響(圖 6(a)), 修正原結構設計模型,使其於本次地震下,結構的整 體加速度反應歷時分析結果(prediction)與量測紀錄 (measurement)相近,如圖 6(b)所示,由於下部結構 勁度遠高於其他樓層,故數值分析與實際量測結果非常 吻合;然而,對於隔震層上方樓版之反應,則有些許高 模態反應差異,但整體而言仍有相當高的準確性。比 較數值分析與實際量測之隔震位移歷時,如圖 6(c)所 示,數值分析於長、短向之最大隔震位移分別為 18 mm 與 17 mm,分別與長、短向實際量測值(21 mm 與 16

(a) 數值模型

mm)相近,均略小於前面結構監測紀錄說明中以反應 譜估計之 25 mm。惟數值分析結果呈現略大的殘餘變 位,其在長、短向分別為 3.68 mm 與 2.21 mm,而實際 則幾乎沒有殘餘變位,推測其原因可能來自於鉛心橡膠 支承墊的分析模型。由於數值模型中是以雙線性行為描 述鉛心橡膠支承墊的力學特性,因此當隔震位移(或力 量)超過降伏點後,會直接進入塑性階段,然在鉛心橡 膠支承墊的實際力學行為中,是以漸進曲線的形式由彈 性階段進入塑性階段,由於本次地震僅使隔震系統產生 些許降伏,其仍在彈塑性的轉換階段,因此在實際表現 上會有較好的復位能力。

花蓮慈濟醫學中心合心樓

結構概述

花蓮慈濟醫學中心位於花蓮縣花蓮市中央路三段 707號,包括四棟主要醫療大樓、靜思堂以及宿舍,全區 **樓地板總面積約為11萬7千餘平方公尺**,為台灣東部首 要的醫療機構。四棟主要醫療大樓中,大愛樓與感恩樓 為傳統耐震結構,協力樓為採用挫屈束制支撐(bucklingrestrained brace, BRB) 之二元系統, 合心樓(又名急診 大樓)則為基礎隔震建築(圖7),其於2005年2月竣 工。合心樓主要用途為急診、開刀房以及一般與加護病 房(圖8),結構為地上十一層、地下一層之鋼骨鋼筋混 凝土建築,採用基礎隔震設計,結構總重為 43206 ton。 隔震系統(圖9)位於地下一樓下方,隔震層下方為具 有 2 m 深地梁之鋼筋混凝土筏式基礎,隔震系統共採用 74 個直徑自 1200 mm 至 800 mm 不等之鉛心橡膠支承 墊,以及14個平面滑動支承,並無安裝額外阻尼器。本 建物隔震系統透過不同型號隔震支承的平面配置,將隔 震系統的剛心盡量重合於上部結構的質心,以降低隔震 系統的扭矩效應。舉例而言,由圖9可以看出,沒有水 平勁度的平面滑動支承配置於圖面結構的下緣,此處對 應於載重極低的大門前廊道;反之,對應於十一樓主結 構之中央位置,因載重較大而採用水平勁度較高的直徑 1200 mm 鉛心橡膠支承墊。此外,本建物的隔震間隙設 計為 700 mm,並且以隔震間隙外、向上延伸至約一樓樓 版高程位置的擋土牆作為第二防制機制。

花蓮慈濟醫學中心合心樓原依據 1997 年版的耐震 設計規範 [11] 以及 2002 年版的建築物隔震設計規範 [2] 進 行結構設計,工址位於地震甲區(震區係數Z=0.33), 於靜力分析中,設計地震等級下隔震系統的有效週期 為 2.76 sec、隔震位移為 238.48 mm、有效勁度為 22759 ton/m、等效阻尼比為 28%,考慮意外扭矩後之設計總位 移為 292.51 mm。

圖 7 花蓮慈濟醫學中心

圖 8 花蓮慈濟醫學中心合心樓 (急診大樓)

圖 9 花蓮慈濟醫學中心合心樓隔震系統之隔震元件配置

0403 花蓮地震後會勘

0403 花蓮地震於花蓮市造成 6 弱的震度,花蓮慈 濟院方於震後初步勘查,得知合心樓因隔震系統發揮功 能,因此沒有結構性的損傷,但於建築外圍仍有因位移 空間預留不足(院方於此次地震前已知)所造成的非結 構元件損傷,以及地下一樓水箱之損壞(經院方評估為 水箱材料老舊所致),除此之外沒有其他非結構構材與 儀器設備損壞之情形。相較之下,未採用隔震設計之協 力樓的災情則嚴重許多,於一樓的牆壁發生剪力裂縫與 結構破壞,其他非結構部分則發生有頂樓水塔破壞、貓 道管線破壞、資訊機房設備倒塌損壞、實驗室局部火災 與儀器倒塌損壞、書櫃與藥用冰箱等櫃體倒榻損壞、隔 間牆碰撞破損等。由此可以驗證,採用隔震設計不僅能 夠有效降低結構受震反應,亦能夠大幅降低非結構元件 與設備之損壞潛勢。

圖 10(a) 及圖 10(b) 為 0403 花蓮地震後立即拍攝之 合心樓建築外圍照片,照片上之溝槽為隔震建築上部結 構一樓向外之懸臂版,推擠周圍花圃土壤所造成,粗略 量測其溝槽寬度,可推估隔震系統於長向與短向分別有 約 320 mm 與 515 mm 之最大隔震位移;於4月 13 日會

(a) 震後長向推擠距離約 320 mm

(c) 04/13 會勘時長向推擠距離 約 300 mm

(b) 震後短向推擠距離約 515 mm

(d) 04/13 會勘時短向推擠距離 約 400 mm

圖 10 以上部結構一樓懸臂版推擠花圃土壤產生之溝槽寬度 判斷於 0403 花蓮地震下之最大隔震位移

勘時,則發現其長向與短向分別有約 300 mm 與 400 mm 之最大隔震位移(圖10(c)及圖10(d))。上述觀測結果 均為粗略量測值,仍需進一步藉由監測紀錄與數值分析 結果予以佐證。

合心樓建築周遭非結構元件受損皆因隔震系統的 運動所引起,由於0403花蓮地震造成了合心樓竣工以 來最大的隔震位移反應,因此許多位於外圍的花圃(圖 11(a))、石階(圖11(b))、地面(圖11(c))、過道側面 (圖11(d))等位置,皆因位移空間預留不足而導致撞 擊破壞,所幸在地震當下沒有人員處於隔震運動範圍 內。另一方面,位於基礎與地下一樓間的隔震系統皆無 受損,透過詳細量測可以發現,隔震支承於長、短向之 殘餘變位均小於 20 mm (圖 12)。然而,此殘餘變位為 歷年地震所累積的結果,並不能完全確定是本次地震所 造成,此亦再次反映隔震建築定期維護管理的重要性。 另外也透過實際量測,得知長、短向與擋土牆的實際隔 震間隙分別為 881 mm 與 740 mm,皆大於計算書中預留 的 700 mm 隔震間隙。此外,於隔震層中亦觀察到近期 需要改善的項目,如圖 13(a) 所示,管線系統沿著擋土 牆鋪設於原預留的隔震間隙內,其雖固定於隔震系統外 部,但仍有可能因佔用隔震間隙,導致未來影響隔震運 動,同時亦會造成管線破損;另外,如圖 13(b)所示, 用於記錄隔震系統變位的位移計,於2018年2月6日 發生的花蓮地震中[12],便因其彈簧探針接觸位置設計不 良,於橫向變位中遭到撞彎而損壞,建議應盡速更換位 移計,並且在適度考量產生雙向隔震位移的前提下,加 大彈簧探針的接觸面積,同時亦可考慮安裝物理性的隔 震位移軌跡紀錄板。

(a) 花圃石墩受損

(c) 地面石墩受懸臂版撞擊導致開裂 (d) 過道側向隔震間隙預留不足 圖 11 花蓮慈濟醫學中心合心樓建築外圍因隔震運動之受損情況

圖 12 花蓮慈濟醫學中心合心樓隔震系統勘查量測

(a) 管線阻礙隔震間隙

圖 13 花蓮慈濟醫學中心合心樓隔震系統於近期可改善項目

結構監測紀錄

合心樓一共安裝有26個加速規與4個位移計, 如圖14所示。於基礎(B2F)與地下一樓(B1F)間 ((即隔震層),裝設有長向與短向各兩個位移計(CH2) 7~ CH30),用以記錄隔震系統的位移情形;然而,由於 位移計在過去的地震中已損壞[12],因此無法記錄到本次 地震的隔震位移歷時。在加速規的配置上,於基礎版的 中央(center)與角隅(corner)位置(參考圖 14(b)), 分別安裝有長向、短向以及垂直向之加速規(CH1~ CH6),其所記錄得到之加速度歷時,可作為整體結構的 輸入擾動依據;地下一樓的配置與基礎版相同(CH7~ CH12),用以直接量測隔震後的加速度反應,同時中央 與角隅位置的加速度反應,可用來觀察隔震系統是否有

發生扭轉或是傾覆的現象;由於結構體在五樓有退縮, 因此在四樓(4F, CH13~CH16)與五樓(5F, CH17~ CH20)分別配置有加速規,同樣於中央及角隅位置安 裝有水平向加速規,但沒有配置垂直向加速規;頂樓 (1F)的配置與基礎版相同(CH21~CH26),其紀錄可 作為整體結構反應的參考。

將合心樓基礎版中央位置加速規的量測紀錄繪於圖 15(a),由圖中可以看出長向與短向的加速度峰值均約為 200 gal,垂直向加速度則高達 262 gal。另一方面,參考 中央氣象署所公布的資料(圖15(b)),直線距離合心樓 約3公里的花蓮市測站(HWA),所量測到的東西、南 北與垂直向最大地表加速度分別為 256 gal、458 gal 以及 208 gal。合心樓長向恰與東西向呈 45 度夾角,因此將

隔震建築於0403花蓮地震之性能表現

HWA 東西與南北向量測資料進行角度旋轉後,可以得 到最大地表加速度為 403 gal(於合心樓長向)以及 327 gal(於合心樓短向),其與合心樓基礎版量測結果差異 甚大,初步推估與加速規裝設深度(合心樓基礎版深度 約為地下4m)有關,其亦可能受到土壤地質及結構互 制之影響,兩者之垂直向加速度峰值則較為相近。

將所有水平向加速規量測之結果繪於圖 16,圖中 以藍線表示中央位置加速規量測紀錄,紅線則為角隅位 置之量測紀錄,圖中顯示紅線與藍線幾乎重合,代表在 本次地震中,上部結構幾近呈現平移運動,並沒有發生 顯著扭轉行為。同時,比較基礎版的輸入歷時波形與隔 震層上方的反應歷時波形,可以明顯觀察到反應週期因 隔震運動而放大之現象。進一步將中央位置加速規記錄 的峰值(非相同時刻)整理於表2,可觀察到隔震層上 方各樓層於同方向的加速度峰值差異並不大,代表在隔 震系統發揮功能下,上部結構無明顯動力放大效應。然 唯有頂樓短向的加速度有些許放大的現象,經向院方詢 問,得知在該加速規附近有額外機械振動源可能造成干 擾。另外,觀察表2中隔震層上方各樓版與基礎版輸入 加速度峰值的比值,可發現長向的折減效率約在20%至 30%,而短向的折減效率則並不明顯,此一現象可經由 後述的輸入擾動加速度反應譜合理解釋之。

另一方面,透過快速傅立葉轉換,由頻率域探討合 心樓於本次地震下的主要振動頻率與反應放大趨勢。將 隔震系統上方各樓層中央位置、雙向的加速度紀錄,轉 換為頻率域反應並繪於圖17。由圖中可以觀察到,各 樓層於同方向的頻率域反應中,皆有相似的基本頻率, 且其對應的峰值隨樓層增加而些微遞增;然而,在11 樓的反應中,於1 Hz 至2.5 Hz之間較其他樓層有較顯 著的反應,尤以短向更為明顯,其可能為院方說明的 額外機械振動源所致。將圖17所觀察之基本模態頻率 (frequency)、週期(period)、振幅(amplitude)整理

圖 16 花蓮慈濟醫學中心合心樓於 0403 花蓮地震下各樓層加速度歷時

於表 3,利用直接觀察表 3 中基本模態之振幅,即可排除前述額外機械振動源所造成之影響。由短向的分析結果可知,11 樓與地下一樓(隔震層上方樓版)的振幅比 值為 1.12,相較表 2 中 11 樓與地下一樓的加速度比值 (290/200 = 1.45)明顯降低不少,因此可初步判斷,此 額外機械振動源對於加速規量測結果確實存在不可忽略 的影響。進一步濾除 11 樓中央位置長、短向加速度紀 錄中 1 Hz 至 2.5 Hz 之間的振動訊號(圖 18),可以觀察 到許多類似外部干擾且其他樓層不存在的訊號均可被消 弭,且短向加速度峰值降為 237 gal,其與地下一樓(隔 震層上方樓版)的比值則降為 1.19,與表 3 中基本模態 的振幅比值(1.12)相近;此外,其與基礎版輸入加速 度峰值的比值降為 113%,相較於表 2 中短向的 11F/B2F

> 表 2 花蓮慈濟醫學中心合心樓於 0403 花蓮地震 下各樓層中央位置加速度峰值統計整理

		(unit: gal)	
Floor	longitudinal	transverse	
11F	152	290	
5F	148	202	
4F	135	198	
B1F	152	200	
B2F	194	209	
11F / B2F	78%	139%	
5F / B2F	76%	97%	
4F / B2F	70%	95%	
B1F / B2F	78%	96%	

(139%),亦變得更為合理。由表 3 也可合理推估於本 次地震下,長、短向對應於最大隔震位移反應之有效週 期分別為 2.94 sec 與 3.33 sec。

根據前面結構概述中說明之合心樓隔震設計結 果,可以計算得到隔震系統的特徵強度為3021 ton (其所對應之啟動加速度值為70 gal)、降伏後勁度為 10094 ton/m^[10]。根據上述頻率域的分析結果,可以得 知於本次地震下長向的有效週期為2.94 sec,因此可以 計算出相應的有效勁度為20116 ton/m、等效阻尼比為 26.46%、隔震位移為301 mm。同樣地,可以得知於本 次地震下短向的有效週期為3.33 秒,亦可由此求得相 應的有效勁度為15966 ton/m、等效阻尼比為21.14%、 隔震位移為514 mm。將長、短向輸入擾動繪製5% 阻

表3 花蓮慈濟醫學中心合心樓於0403 花蓮地震下各樓層 中央位置加速度於頻率域之基本模態頻率、週期與 振幅比較

Floor	Longitudinal			Transverse		
	Amplitude	Frequency	Period	Amplitude	Frequency	Period
11F	3.19	0.34	2.94	4.19	0.3	3.33
5F	3.12	0.34	2.94	3.94	0.3	3.33
4F	3.15	0.34	2.94	3.88	0.3	3.33
B1F	3.08	0.34	2.94	3.73	0.3	3.33
11F/B1F	1.04			1.12		
5F/B1F	1.01			1.06		
4F/B1F	1.02			1.04		-

(unit: Hz, sec)

圖 17 花蓮慈濟醫學中心合心樓於 0403 花蓮地震下各樓層中 央位置加速度頻率域反應

尼比的反應譜,並依據兩方向於前述計算得到之等效阻 尼比繪製相應的反應譜,如圖 19 所示。由圖 19 中可以 得到長、短向所對應的譜加速度值分別為 116 gal 與 172 gal,其略低於表 2 中隔震層上方樓版所量測到的加速度 峰值(長、短向分別為 152 gal 與 200 gal);長、短向 所對應的譜位移值分別為 256 mm 與 485 mm,其分別 略小於依雙線性遲滯迴圈模型所計算之長、短向隔震 位移(301 mm 與 514 mm),但整體而言,不論是依雙 線性遲滯迴圈模型或輸入擾動反應譜所計算之結果, 均近似於現場花圃初步量測到之最大隔震位移(見震 後會勘說明與圖 10)。

將本次地震(20240403)與2018年2月6日發生 的花蓮地震(20180206),於合心樓基礎版量測到的加 速度紀錄繪製成正規化反應譜(最大地表加速度為1 g),其長、短向原始紀錄之加速度峰值分別為266 gal 與139 gal,同時亦提供2011年版^[4]與2024年版^[13]耐 震設計規範之正規化設計反應譜(有效最大地表加速度 為1g)進行比較,如圖20所示。由圖中可以發現在兩 次的地震中,於長、短兩向都有明顯的長週期反應,在

圖 19 花蓮慈濟醫學中心合心樓於 0403 花蓮地震下不同阻尼 比之輸入擾動加速度與位移反應譜

圖 20 20180206 與 20240403 花蓮地震以及不同設計反應譜之 比較

正規化的條件下,長週期的反應遠遠超過兩個新舊版本 耐震設計規範之設計反應譜,以本次地震短向的加速度 紀錄為最,其中2024年版之設計反應譜已針對近斷層 地震參數進行修訂。於震後會勘說明中已提及,在2018 年2月6日發生的花蓮地震中,用於記錄隔震系統變位 的位移計發生損壞^[12],因此,於該次地震中同樣是利用 現場量測合心樓建築周圍花圃土壤推擠距離以推估最大 隔震位移,於長、短向分別約為300 mm 與220 mm (其 值亦可利用上述雙線性遲滯迴圈模型加以驗證)。由圖 20中之比較可反映實際狀況,由於本次地震之短向譜 加速度值,在長週期範圍遠高於2018年2月6日花蓮 地震下之短向譜加速度值,因此本次地震會發生遠大於 2018年2月6日花蓮地震之短向隔震位移;此外,對於 此一工址區域,現行耐震設計規範之設計反應譜是否足 夠保守,仍需進一步深入探討與研究。

數值模型分析

以花蓮慈濟醫學中心合心樓基礎版於 0403 花蓮地 震下的加速度量測紀錄作為輸入擾動加速度歷時,採 用商業軟體 SAP2000 進行非線性動力歷時分析。將數 值模型適度考慮非結構牆體的影響,並以 2018 年 2 月 6 日花蓮地震(20180206)中結構之加速度反應歷時量 測紀錄作為基準進行擬合修正(圖 21(a)),使結構的整

體加速度反應歷時分析結果(prediction)與量測紀錄 (measurement)相近(圖 21(b)),再以 2009年12月 19日之地震(20091219)進行驗證(圖 21(c))^[12]。由 於 2009 年 12 月 19 日地震發生時,安裝於隔震層之位 移計尚未損壞,因此可以同時作為與數值分析結果進 行比對之可靠依據,由圖 21(c) 中可以看出模擬結果 與實際量測反應相當吻合。最後,以經擬合修正之數 值模型,分析於本次地震下的結構反應。由隔震層上 方樓版之加速度反應歷時比較(圖22(a)),可發現雖 然在高模態反應頻率與振幅模擬上,與實際量測結果 有所差距,但對於隔震基本模態反應仍可有效掌握, 足以驗證數值模型與分析結果的可信度。隔震位移歷 時分析結果繪於圖 22(b),其中長向與短向的最大隔 震位移分別為 270 mm 與 450 mm,其均相近於現場花 圃初步量測到之最大隔震位移(見震後會勘說明與圖 10),因此得以進一步確認此次地震下合心樓的最大隔 震位移反應。

圖 22 花蓮慈濟醫學中心合心樓於 0403 花蓮地震下之數值模擬結果

結論

0403 花蓮地震對於台灣東部至西北部區域造成了 巨大的影響,對於位在這些區域的隔震建築,更是首次 經歷如此大規模的地震。國家地震工程研究中心與中華 建築隔震消能構造協會,前往花蓮與大台北地區,勘查 隔震建築震後的損傷情形。從會勘結果中可以歸納出, 所有隔震建築皆沒有結構性的損傷,建築內部的非結構 元件與設備幾乎無損壞發生。隔震建築中大部分的非結 構損傷,皆因隔震系統的運動所造成,例如部分裝修材 料因預留隔震間隙不足導致碰撞損傷、上下部結構間的 防水材料損壞、隔震元件防火蓋版的填縫材料變形破裂 或遭到擠出、以及懸吊電梯的活動蓋版受到輕微擠壓變 形。從本次會勘中,亦觀察到了數項重要的議題,包含 隔震系統的定期與震後詳細檢查、隔震建築於地震發生 時的危險區域應明顯標示並進行安全宣導、以及電子與 物理量測設備對於判斷結構狀況的重要性。

台灣大學土木研究大樓(中間樓層隔震)與花蓮 慈濟醫學中心急診大樓(基礎隔震)裝設有完整的監 測系統,於本次地震中皆承受了足以啟動隔震系統的地 震擾動,且完整地記錄了隔震系統與結構的反應。本文 針對此兩棟隔震建築進行詳細勘查,並進一步透過結構 監測紀錄探討隔震性能之發揮。於台灣大學土木研究大 樓進行震後勘查,僅發現懸掛電梯蓋版處輕微變形、隔 震層防水材料變形、以及隔震元件防火版填縫膠變形擠 出。監測紀錄顯示,結構長、短向最大隔震位移分別為 21 mm 與 16 mm。依過往針對本棟結構與隔震元件之研 究,判斷隔震系統應處於初始啟動階段,但即使如此, 比較隔震層上、下樓版的加速度峰值,可以計算出在 長、短向的折减效率分別有 21% 與 37%, 且於上部結構 未觀察到有明顯的加速度放大反應。再者,根據隔震設 計參數計算有效週期與等效阻尼比後,比對經阻尼折減 之輸入反應譜,可以得到與實際量測結果相近之最大加 速度與隔震位移反應,驗證了其實際表現與設計預期結 果相近。最後,根據實際加速度反應歷時紀錄擬合修正 數值模型,發現若隔震系統處於初始降伏階段,於實際 狀況下,因為初始降伏階段仍保有一定的彈性,因此可 以些微降低震後殘餘變位的發生。

於花蓮慈濟醫學中心進行震後勘查,得知合心樓因 隔震系統發揮功能,因此沒有結構性損傷,但於建築外 圍仍有因位移空間預留不足所造成的非結構元件損傷。 相較之下,未採用隔震設計之協力樓,則發生了多處結 構與非結構損傷,造成許多櫃體與重要設備的損壞。由 此可以驗證,採用隔震設計不僅能夠有效降低結構受震 反應,亦能夠大幅降低非結構元件與設備之損壞潛勢。 透過監測系統,可以觀察到地震擾動經隔震系統傳遞至 上部結構,有顯著降低反應振幅與延長反應週期之趨 勢,且上部結構無明顯反應放大現象。在頂樓短向的加 速規則量測到較大的加速度峰值,經向院方詢問以及頻 率域分析證實,得知其造成之原因為額外振動源輸入, 在參考頻率域分析結果進行特定頻率範圍的濾波後,可 以得到預期的結構反應。同時,藉由頻率域分析結果, 可以得到合心樓於 0403 花蓮地震下隔震系統的有效週 期。然而,由於安裝於隔震層的位移計在過往地震中損 壞,無法記錄本次地震的隔震位移反應,透過隔震設計 結果、反應譜與非線性動力歷時分析等有學理依據的方 法進行探討,仍可得到與現場量測相符的結果。

誌謝

本研究承蒙台灣大學土木系與花蓮慈濟醫學中心之 資料提供與會勘協助。

參考文獻

- 張毓文、簡文郁、劉勛仁(2023),「近斷層工址設計地震反應譜 要求之修訂重點」,技師期刊,第101期,第25-31頁。
- 2. 建築物隔震設計規範,內政部(2002)。
- 3. 建築物耐震設計規範及解說,內政部(2005)。
- 4. 建築物耐震設計規範及解說,內政部(2011)。
- Wang, S.J., Lin, W.C., Yu, C.H., Yang, C.Y., Chang, K.C., and Hwang, J.S., (2024). "Current state and future challenges of seismic isolation development in Taiwan," Seismic Isolation Structures Worldwide, The Japan Society of Seismic Isolation (JSSI), pp. 62-76.
- 周中哲、吳俊霖、柴駿甫、姚昭智(2024),2024-04-03 臺灣花蓮 地震事件彙整報告,國家地震工程研究中心。
- Shahi, S.K. and Baker, J.W., (2014). "NGA-West2 models for ground motion directionality," Earthquake Spectra, Vol. 30, No. 3, pp. 1285-1300.
- Wang, S.J., Chang, K.C., Hwang, J.S., and Lee, B.H., (2011). "Simplified analysis of mid-story seismically isolated buildings," Earthquake Engineering and Structural Dynamics, Vol. 40, No. 2, pp. 119-133.
- 9. 張國鎮、黃震興、汪向榮、李柏翰、陳鴻文(2008),台灣大學土 木系新建研究大樓中間層隔震元件試驗,國家地震工程研究中心 技術報告,編號:NCREE-2008-042。
- Wang, S.J., Lee, H.W., Yu, C. H., Yang, C.Y., and Lin, W.C., (2020). "Equivalent linear and bounding analyses of bilinear hysteretic isolation systems," Earthquakes and Structures, Vol. 19, No. 5, pp. 395-409.
- 11. 建築物耐震設計規範及解說,內政部(1997)。
- 12 Lin, J.L., Kuo, C.H., Chang, Y.W., Chao, S.H., Li, Y.A., Shen, W.C., Yu, C.H., Yang, C.Y., Lin, F.R., Hung, H.H., Chen, C.C., Su, C.K., Hsu, S.Y., Lu, C.C., Chung, L.L., and Hwang, S.J., (2020). "Reconnaissance and learning after the February 6, 2018, earthquake in Hualien, Taiwan," Bulletin of Earthquake Engineering, Vol. 18, pp. 4725-4754.
- 13. 建築物耐震設計規範及解說,內政部(2024)。