

DOI: 10.6653/MoCICHE.202404_51(2).0009

郭玉樹*/國立成功大學水利及海洋工程學系 教授 金秉憲/國立成功大學水利及海洋工程學系 碩士生 張上君/台灣世曦工程顧問股份有限公司港灣部 副理 紀昭銘/逢甲大學土木工程學系 助理教授 曾玉修/超島環能有限公司 工程師

我國已宣布第三階段離岸風電區塊開發相關規劃,於2026年至2035年擬開放共15GW的發電容量。 同時,初步規劃三個浮動式風場示範計畫,其開發水深介於60m至80m之間。對於建構於砂質海床上的 浮式風機離岸風場,以懸垂式繫纜系統搭配嵌入式拖錨(DEA)為一適合台灣西部海床土壤的水下錨錠基 礎型式。由於台灣離岸風場海床地形常因砂波運動造成週期性的高程變化,浮式風機錨錠基礎設計時應將 砂波運動造成之海床高程變化納入之安裝深度與承載力計算考量。本研究以有限元素法建立嵌入式拖錨貫 入海床之數值分析模型,計算嵌入式拖錨之貫入軌跡與承載力。透過改變砂波引致之地形高程,將大地應 力對土壤參數造成之影響納入拖錨-土壤互制分析模型,評估嵌入式拖錨於砂波運動引致海床高程變化對 拖錨貫入深度與承載力之影響。初步分析結果顯示,於砂波運動造成海床面降低後進行安裝,將使嵌入式 拖錨之貫入深度變淺,且承載力下降。

關鍵詞:嵌入式拖錨、砂波、貫入軌跡、承載力

前言

國際對氣候變遷議題高度重視,各國皆陸續提出 「2050淨零排放」的宣示與行動,我國於2022年3月 正式公布「臺灣2050淨零排放路徑及策略總說明」, 同時順應國際《巴黎協定》(Paris Agreement, PA)減 少碳排放量,發展再生能源並擴大再生能源設置,提 升自產能源占比,目標使進口能源依存度由2021年 97.4%,降至2050年50%以下,降低國際能源市場衝 擊與價格波動對我國能源安全影響,同時透過發展離 岸風電與太陽光電帶動綠能產業鏈促成產業轉型。

隨著陸域風場開發逐漸飽和,離岸風電將是我國於 2025年達成碳減排目標的關鍵開發項目之一。考量離 岸風電開發具備高成本及高技術門檻之困難,經濟部參

* 通訊作者, kuoyushu@mail.ncku.edu.tw

考國際風電開發經驗,秉持先陸域後離岸、先示範後區 塊、先淺海後深海之推動策略,循序開發我國離岸風力 發電。依循我國離岸風場開發規劃,目前風場開發區域 均為水深 50 m 以內之淺海區域,受開發場址區位與環 境條件影響,現階段各離岸風場開發案採用之離岸風機 基礎型式均為固定式基礎,如多樁套管基礎、大口徑單 樁基礎等,考量第二階段潛力場址開發過程中,許多開 發商因航道、生態、社會環境等因素被迫取消或終止風 場開發,因此於第三階段區塊開發時,能源局將依據綠 能、航道、生態及社會環境等多元面向,將海域空間劃 設為低度、中度、高度敏感區,明確規範業者可開發場 址,以及應排除之範圍。由於水深 50 m 以內之離岸風 場已逐漸飽和,台灣的離岸風場開發正逐漸走向水深更 深、離岸更遠的區域,浮動式離岸風機有機會成為我國 第三階段離岸風場區塊開發的風機型式。 我國西部離岸風場之水深條件多小於 100 m,若採 用浮動式離岸風機進行離岸風場開發時,風機浮體結 構可能需要多組繫纜搭配錨錠基礎進行安裝;於單一 機組之錨錠基礎設計時,即可能需要考量多點的海床 土壤地質調查規劃。根據我國第一階段與第二階段以 固定式基礎離岸風機進行離岸風場開發經驗,我國海 床土壤條件複雜,表層多為無凝聚性土壤,且於水平 方向的土壤條件變異性高;於後續進行浮動式離岸風 機錨錠基礎設計與安裝時,尤其需要了解海床土壤之 地工設計風險,以選擇合適之錨錠基礎型式。

考量我國離岸風場海床表層土壤多為疏鬆砂土且 砂波運動劇烈,故本文以最常用於懸垂式繁纜之嵌入 式拖錨為錨錠基礎案例型式,初步探討嵌入式拖錨於 砂波運動劇烈海床使用時可能面臨之設計風險。

浮動式風機繫纜系統與錨錠型式

浮動式風機搭配之錨繫系統主要可分三種類型: 懸垂式錨繫系統(Catenary Mooring System)、緊拉式 錨繫系統(Taut Leg Mooring System)或半緊拉式錨繫 系統(Semi-Taut Mooring System)、以及張力式錨繫系 統(Tension Leg Mooring System),如圖1所示,

一般常見之浮動式風機錨錠基礎可分為表面重力式 錨錠(surface gravity anchor)及嵌入式錨錠(Embedded anchor)。表面重力式錨錠以錨體自重與海床接觸摩擦 力固定繫纜,常見之型式為包括箱狀錨錠/箱錨(Box anchor)及格柵式錨錠(Grillage and berm anchor);嵌 入式錨錠則利用錨體貫入海床中,藉由錨體自重、接 觸介面摩擦力或凝聚力及被動土壓力固定繫纜,包括 錨樁(Driven or drilled and grouted pile anchor)、吸力 式沉箱錨(suction anchor/caisson)、嵌入式拖錨DEA (Drag Embedded Anchor)、垂直拖錨 VLA(Vertical Load

Anchor)等,各類錨體型式如圖2所示。

對應我國離岸風場水深條件及土壤條件,表1列出 適用於我國浮動式風力發電機適合匹配的錨錠基礎型 式。其中,由於混凝土重力錨佔地廣,環評不易通過, 而另外,新型式動力安裝魚雷錨(Torpedo Anchor)則

圖1 懸垂式錨纜、緊拉式錨纜、張力平台錨纜[1]

圖 2 常見離岸浮動平台錨體型式(改繪自 Randolph and Gourvenec^[1])

可能因施放水深不足,易偏轉造成貫入深度不足,因 此較不適用於台灣海域環境。

透過與離岸風電專家研討後,初步篩選最為可行 之錨錠基礎型式為嵌入式拖錨及樁錨(包含打擊樁與吸 力樁)。同時,依照全球浮動式風機案例可知,拖錨基 礎為最為常見之錨錠基礎應用型式,包含 WindFloat1、 Fukushima FORWARD、Kincardine 等,其次則為吸力 樁錨,如 Hywind project。

我國西部離岸風場海床砂波運動與海床 地形變動

台灣西部近海離岸風場海床表層多為中等緊密之無凝 聚性土壤且砂波活動頻繁^[2],廖音瑄^[3]以中能離岸風場提 供之海床地形實測資料進行分析研究,於一年期間之彰化 近海砂波運動引致海床高程變化可能高達 6.7 m。砂波運 動為週期性自然現象,主要造成海床地形隆起或降低,如 圖3所示。砂波運動除了會改變海床地表高程,亦將造成 土壤緊密程度與土壤力學性質改變。對於固定式基礎離岸 風機之水下基礎,砂波運動將造成基礎埋置深度增加或減 少,直接影響整體支撐結構的自然振動頻率。

對於採用嵌入式拖錨搭配懸垂繫纜之浮式風力發 電機,若於砂波運動形成之海床面淤高時進行嵌入式 拖錨安裝,可能於砂波運動再度侵蝕海床後,造成嵌 入式拖錨之埋置深度減少,承載力下降。若於砂波運 動形成之海床面侵蝕時進行嵌入式拖錨安裝,可能於 砂波再度運動淤高海床後,造成嵌入式拖錨之埋置深 度增加,承載力提升。

本研究透過彙整各離岸風場(含申請開發但未獲配 開發容量之場址)之環境影響評估、地質調查、基礎設 計等相關報告內容,收集範圍包括台電離岸一期、海 洋竹南、福海、竹風(#4)、海能(#5-6)、海鼎(#11, 16-17)、大彰化(#12,15)、大彰化東北(#13)、大彰

			懸垂式	緊拉式	張力腳		
錨纜					Ĩ		
(1) 適用水深條件			淺(50 m~150 m)、 中(150 m~1,000 m)、 深(>1,000 m)	淺(50 m~150 m)、 中(150 m~1,000 m)、 深、極深(>1,000 m)	深、極深(>1000 m)		
(2) 海床面作用力			水平	傾斜 (水平+垂直)	垂直		
(3) 搭配錨錠基礎			Gravity & Suction caisson DEA Anchor pile	Suction casson VLA Anchor pile	Anchor pile		
(4) 土壤條件	clay	soft	Suction caisson DEA	Suction caisson VLA	Anchor pile		
		hard	Gravity anchor suction Casson DEA	Suction caisson Anchor pile	Anchor pile		
	sand	loose	Gravity *	Suction calision Anchor pile	Anchor pile		
		dense	Gravity anchor Anchor pile	Anchor pile	Anchor pile		
	Soft rock		Gravity anchor Anchor pile	Anchor pile	Anchor pile		

表1 錨錠基礎選型適用條件

化(#14)、海龍(#18-19)、彰芳福芳(#27-28)、彰化 西島、中能、雲林等離岸風場,將各離岸風場調查與 分析所得之海床表層砂波厚度列如表2。其中,可知我 國西部離岸風場砂波厚度由0.5 m至9m不等,根據本 計畫團隊執行科技部「離岸風機水下基礎設計暨維護 決策資料庫與展示平台開發」計畫,我國西部近岸離 岸風場(如中能風場),每年砂波運動劇烈,海床地表 高程年變動量可達5m以上。

砂波對於土壤力學參數之影響

本文參考 Lin et al.^[4] 針對淘刷引致之土壤參數變 化,應用至砂波移動侵蝕海床使海床土壤轉成為過壓密 土壤的現象。假設砂波移動造成海床土壤高程降低前之 土壤初始有效單位重 γ'_{int},透過式 (1)即可得到土壤中各深 度垂直主應力。假設淘刷前之均質土壤有效摩擦角 φ'_{int}, 透過式 (2)可得土壤之水平主應力。將式 (1) 及式 (2) 之 計算成果,結合式 (3)即可得砂波移動侵蝕海床前之平

圖 3 砂波測掃剖面圖 [2]

表2 我國離岸風場砂波厚度資料彙整

離岸風場	表層砂波條件	調查時間	
台電離岸一期	$2 \text{ m} \sim 5 \text{ m}$	2006/07-2006/10 2008/03-2008/06	
海洋竹南	—		
福海	$3 m \sim 5 m$	2014/05	
竹風(#4)	$0.5\ m\sim 1.5\ m$	2016/11	
海能(#5-6)	_		
海鼎(#11,16-17)	$3 \text{ m} \sim 10 \text{ m}$	2017/03	
大彰化(#12,15)	$0.2\ m\sim 4\ m$	2016/08	
大彰化東北(#13)	$0.3\ m\sim 0.7\ m$	2016/08	
大彰化(#14)	$0.3\ m\sim 6\ m$	2016/08	
海龍(#18-19)	$5 m \sim 9 m$	2016/10	
彰芳福芳(#27-28)	$2 m \sim 6 m$	2016/06	
彰化西島	6 m	2016/06	
中能	3 m ~ 5 m	2016/09	
雲林	$2 \text{ m} \sim 5 \text{ m}$	2016/10	

均主應力 P'_{int},且假設殘餘摩擦角 \vert \vert_s。將上述參數帶入 式 (5) 進行相對密度 D_{r,int} 的迭代計算,使方程式左右相 等,即可獲得初始相對密度隨深度的分佈。

$$\sigma'_{\nu} = \gamma'_{int} \cdot z \tag{1}$$

$$\sigma'_{h} = K_{0n} \cdot \gamma'_{int} \cdot z = (1 - \sin \phi'_{int}) \cdot \gamma'_{int} \cdot z \tag{2}$$

$$P'_{int} = \frac{\sigma'_v + 2\sigma'_h}{3} = \frac{\gamma'_{int} \cdot z(3 - 2\sin\phi'_{int})}{3}$$
(3)

$$D_{r,int} = \frac{e_{\max} - e}{e_{\max} - e_{\min}} \tag{4}$$

$$\phi'_{int} = \phi'_{cs} + 3D_{r,int} \left[10 - ln \left(p'_{int} / \left(1 - \frac{2\sin\phi'_{int}}{3 - \sin\phi'_{int}} \right) \right) \right] - 3 \quad (5)$$

假設砂波侵蝕海床地形造成海床高程降低量為 S_d,藉由式(6)至式(9)所計算出之成果,可由式(10) 計算出海床高程變動後的平均主應力 P'sc。式(11)由海 床高程變動前之平均主應力 P'm 以及變動後之平均主應 力 P'sc計算出孔隙比變動值 Δe。而式 (12)、(13) 藉由基本定義計算高程變動前後之孔隙比 e,當其變化量與式 (11) 成果一致時,即得海床地表高程降低後之有效單位重 γ'sc。將迭代後之相對密度以及平均主應力代入式 (15),可迭代計算淘刷後之有效摩擦角 ψ'sc。

$$\sigma'_{v,sc} = \gamma'_{sc} \cdot (z - S_d) \tag{6}$$

$$\sigma'_{h,sc} = K_{0c} \cdot \gamma'_{sc} \cdot (z - S_d) \tag{7}$$

$$K_{0c} = (1 - \sin \phi_{sc}') \cdot OCR^{\sin\phi_{sc}'}$$
(8)

$$OCR = \frac{\gamma'_{int} \cdot z}{\gamma'_{sc}(z - S_d)}$$
(9)

$$P_{sc}' = \frac{\sigma_{v,sc}' + 2\sigma_{h,sc}'}{3} = \frac{\gamma_{sc}' \cdot (z - S_d) \cdot (1 + 2K_{0c})}{3}$$
(10)

$$\Delta e = -k \cdot ln \left(\frac{P_{sc}'}{P_{int}'} \right) = e_{int} - e_{sc}$$
(11)

$$e_{int} = \frac{(G_s - 1)\gamma_w}{\gamma'_{int}} - 1$$
(12)

$$e_{sc} = \frac{(G_s - 1)\gamma_w}{\gamma'_{sc}} - 1 \tag{13}$$

$$D_{r,sc} = D_{r,int} - \Delta e \tag{14}$$

$$\phi_{sc}' = \phi_{cs}' + 3D_{r,sc} \left[10 - ln \left(p_{sc}' / \left(1 - \frac{2\sin\phi_{sc}'}{3 - \sin\phi_{sc}'} \right) \right) \right] - 3 \quad (15)$$

嵌入式拖錨貫入軌跡分析數值模型

為初步探討砂波對於嵌入式拖錨承載力影響,本研究 以 Lin et al.^[4]建議之方法,將海床土壤移除造成土壤垂直 有效應力之改變,納入計算土壤強度變化,結合本研究以 商用有限元素數值分析軟體 ABAQUS 建立之嵌入式拖錨貫 入軌跡分析模型,評估砂波運動對嵌入式承載力之影響。

有限元素數值分析模型

本研究採用有限元素數值分析商用軟體 ABAQUS 建構 嵌入式拖錨三維數值分析模型,以ABAQUS/explicit 運算 方式結合 CEL 元素模擬拖錨貫入土壤造成之大變形行為。 土壤模型總高 12 m,為節省計算資源,模型中之土體於 後半段之寬度減為 0.85 m。土體模型上部為 1 m 厚之 void 層,使拖錨基礎於貫入過程中土壤可隨其位移移動至 void 層中。錨板及錨柄組合成之錨錠於 CEL 法中被定義為拉格 朗日網格,以便追蹤其在貫入過程中之網格位移。而與土 壤接觸之錨錠基礎則因剛性極大,被定義為剛體。土體被 定義為歐拉網格,土壤在錨錠基礎貫入時,於歐拉網格內 部流通,網格不隨錨錠基礎貫入土壤而發生變形。嵌入式 拖錨貫入軌跡分析有限元素數值分析模型配置如圖4所示。

本研究參考依循 Liu and Zhao^[5] 與許偉勛^[6] 建立 簡化拖錨基礎貫入海床土壤數值分析模型, 錨板長 L_f 為 2 m、錨板寬 W_f為 2 m, 錨板厚 t_f為 0.1 m, 錨柄長 L_s為 2.4 m, 錨柄寬 d_s為 0.2 m, 錨板與錨柄夾角 θf_s為 45°。模型土體長 85 m, 前段寬 3 m,後段寬 0.85 m, 土壤模型尺寸如圖 5 所介紹。錨錠與土體所組成之有 限元半對稱模型如圖 4 所示。嵌入式拖錨採用鋼材模 擬,表 3 為嵌入式拖錨之材料參數。

表3 嵌入式拖錨模型材料參數表

材料	參數	數值 (單位)
	浸水單位重	$68 (kN/m^3)$
鋼材	彈性模數	2.1E + 08 (kPa)
	柏松比	0.3

模擬條件與土壤參數給定

砂波侵蝕海床面後造成土壤有效摩擦角以及有效單 位重變化於海床表層發生劇烈變化,其值隨著具海床面 深度增加逐漸趨於與原海床土壤參數條件。為考慮砂波 運動造成土壤特性變化對嵌入式拖錨貫入深度與承載力 之影響。本研究考量如圖 6 之兩種情境進行模擬,(1) 嵌入式拖錨於砂波淤高之海床面進行貫入與(2) 嵌入式 拖錨於砂波造成海床面降低高程 *S_d* = 5 m 處貫入。

圖 6 嵌入式拖錨貫入砂波引致不同海床高程之模擬條件示意圖

根據張欽森等人^[2] 及廖音瑄^[3] 之研究,砂波波長可 長達 295 m。於高程變化量 S_d 為觀測最大值 6.7 m 時,砂 波之坡度 θ_s 可小於 1.3°。圖 7 及圖 8 之示意圖分別代表情 境 (1) 以及情境 (2) 之模擬條件,本研究採用之初始計算 參數如表 4 所示,透過求得砂波侵蝕海床面發生前後有效 單位重 γ'_{int} 、有效摩擦角 ϕ'_{int} 以及相對密度 $D_{r,int}$ 隨深度變 化圖,圖 8 顯示在砂波造成海床面降低後土壤有效摩擦角 ϕ'_{sc} 以及孔隙比 e_{sc} 會隨著深度改變。

表4 本研究採用之海床土壤初始參數

	会數 (留 仁)	條件		
	今致 (平位)	未考慮砂波	考慮砂波 (top/bottom)	
砂土	浸水單位重(t/m ³)	0.9	0.895/0.8975	
	摩擦角(°)	30	30.75/30.4	
	彈性模數(kPa)	5000	5000/5000	
	柏松比	0.25	0.25/0.25	
	剪脹角 (°)	0	0/0	

圖 7 未發生砂波條件下之模擬條件

由圖 9 分析成果顯示土壤有效摩擦角由砂波侵蝕海床面前的 30° 變為隨深度遞減且逐漸趨近於原地表高程對應之有效內摩擦角;由圖 10 可知土壤有效單位重從砂波侵蝕海床面前的 9 kN/m³ 變為從 8.84 kN/m³ 隨深度遞增圖 11 顯示。由圖 11 可知海床土壤緊密程度則由砂波發生前的相對密度 *D_{r,su}*為 19.3% 持續向更深處遞增變為淘刷後海床面相對密度 度 *D_{r,su}*為 23.3% 向下遞增,可見當砂波發生後海床土壤緊密程度上升。而砂波後之緊密程度會隨深度接近砂波前。

本模型建立考慮砂波淘刷後之土壤模型總高為12 m於海床面下7.5 m處分層,藉由其參數隨深度變化 圖取其特徵值進行模擬。上層土壤有效摩擦角 \vee 'sc 為 30.75°,有效單位重 \vee 'sc 為 8.95 kN/m³。下層土壤有效 摩擦角 \vee 'sc 為 30.4°,有效單位重 \vee 'sc 為 8.975 kN/m³。砂 波後土壤有效摩擦角及有效單位重如表4所示。

本研究使用莫爾庫倫破壞準則(Mohr-Columb failure criterion)堆砌土壤破壞準則。於數值模型中, DEA 貫入速率較慢,砂土為排水條件,應可直接給定砂 質土壤之有效內摩擦角,但參考許偉勛 ^[6] 進行數值模型 校正後建議,下文採用等效之無凝聚性土壤剪力強度模 擬嵌入式拖錨於砂質土壤中之貫入行為,更符合嵌入式 拖錨所受拖曳力與貫入深度之關係。

$$S_u = \frac{2K_0 + 1}{3}\gamma' z \,\tan\phi' \tag{16}$$

將砂波造成海床高程降低前後之土壤摩擦角以及 有效單位以式(16)計算,即可得到等效深度之不排水 剪力強度。考量本數值模型現階段之材料組合律之限 制,土壤強度將給予分層簡化,並給定特徵值模擬砂 波造成土壤參數之變化。砂波使海床高程降低前不排 水剪力強度 S_u於 0 至 4 m 深分層給定 6.24 kPa,4 至 12 m 之不排水剪力強度則給定 24.94 kPa 作為特徵值。 砂波使海床高程降低後不排水剪力強度於 5 至 12.5 m 分層給定 11.98 kPa,12.5 m 至 17 m 之不排水剪力強度 給定 31.07 kPa 作特徵值進行模擬。

砂波對嵌入式拖錨承載力之影響

本文藉由 Lin et al.^[4]提出淘刷後土壤轉變過壓密土 壤之參數模擬 DEA 於砂波運動使海床面降低時進行貫 入行為之變化。砂波使海床高程降低前(Case1)之貫 入深度為 9.19 m 深,承載力為 731.46 kN。砂波使海床 降低後(Case2)之 DEA 貫入深度為 7.47 m,承載力為 583.72 kN。嵌入式拖錨於 Case2 之條件下比 Case1 之 貫入深度減少 1.72 m,承載力降低 147.74 kN。顯示嵌 入式拖錨在砂波使海床降低後之土壤貫入時,其貫入 深度與承載能力均會降低,如圖 12 與圖 13 所示。

53

小結

本研究以有限元素數值模型建立耦合歐拉-拉格朗 日法(CEL)網格進行嵌入式拖錨貫入海床土壤大變形 分析,本數值模型之模擬結果藉由塑性分析法之理論貫 入軌跡進行驗證。再藉由 Lin *et al.*^[4]提出之淘刷改變土 壤參數之方法模擬砂波使海床面下降 5 m 時,嵌入式拖 錨貫入海床行為。

將嵌入式拖錨於兩種因砂波引致之海床高程條件 進行貫入,經初步模擬成果顯示,拖錨的貫入軌跡與 承載能力均會受到砂波引致海床地形高程變化影響。 當嵌入式拖錨於砂波引致海床高程下降之區位進行貫 入時,將使得其貫入深度減少,且承載力下降;此結 果顯示,於海床砂波活動劇烈區域進行嵌入式拖錨設 計時,須審慎考慮海床高程地形變動對其設計承載力 之影響。

誌謝

感謝科技部及台灣世曦工程顧問股份有限公司產學 合作計畫「浮式風機錨錠基礎設計與安裝風險評估研究 (Ⅱ)」之研究經費支持,以及感謝國研院國網中心提供 高速計算與雲端儲存資源,以協助此研究順利進行。

參考文獻

- 1. Randolph, M. and Gourvenec, M.R.S. (2011), Offshore Geotechnical Engineering, Taylor & Francis.
- 張欽森、張上君、李信志、林俶寬、劉新達(2017),「離岸風場 區塊開發海域環境建構計畫(1/4)」成果報告,經濟部能源局。
- 廖音瑄(2020),「中臺灣海峽近岸區沙波的遷移及演化」,臺灣 大學海洋研究所學位論文。
- Cheng Lin, Caroline Bennett, Jie Han, Robert L. Parsons. (2010). "Scour effects on the response of laterally loaded piles considering stress history of sand," Computers and Geotechnics, 37, 1008-1014.
- Liu, H.-X. and Zhao, Y.-B. (2014). "Numerical study of the penetration mechanism and kinematic behavior of drag anchors using a coupled Eulerian-Lagrangian approach," Geotechnical Engineering, 45, 29-39.
- 6. 許偉勛(2022),「嵌入式拖錨貫入行為數值模擬」,國立成功大 學水利及海洋工程研究所學位論文。

