DOI: 10.6653/MoCICHE.202210 49(5).0007

柯永彦/國立成功大學土木工程學系 副教授 楊鶴雄/財團法人國家實驗研究院國家地震工程研究中心 組長 胡啟文/交通部運輸研究所港灣技術研究中心 研究員

台灣四面環海,海上運輸可謂經濟命脈;台灣又經常受到地震威脅,碼頭震損屬常見地工震害,將影 響國內外運輸甚至衝擊經濟。為瞭解碼頭構造物實際耐震性能,並掌握碼頭受震時之可能災損,本研究針 對重力式碼頭,發展耐震性能評估與易損性分析方法。首先,引入相關規範之碼頭損壞等級定量準則,並 收集實際震損案例予以驗證;接著,基於動力分析法,並考量重力式碼頭之震損特性,提出納入土壤液化 影響之重力式碼頭受震反應分析模式,以花蓮港25號碼頭為案例進行驗證,並搭配前述碼頭損壞準則進行 耐震性能評估;最後,利用前述耐震性能評估方法建立易損性分析程序,並同樣以花蓮港25號碼頭為案例 ,在綜合考慮場址效應、震源距離與地震規模等因素之下選取多筆實際地震紀錄,進行各種情境下之大量 分析,歸納出碼頭損害機率與強地動參數間之關係,此即易損性曲線,並予以參數化,以利於早期震損評 估之運算需求。相關成果可用來檢驗既有碼頭耐震性能,更可供碼頭耐震性能設計之參考;並可用於快速 評估港灣遭遇地震時之可能損害情況,作為震災應變計畫之依據,以提升運輸系統之防災能力。

關鍵詞:碼頭構造物、損壞準則、耐震性能、易損性分析、土壤液化

研究背景與目的

台灣位於多地震的西環太平地震帶,且活動斷層 遍佈全島,經常受到地震威脅。為減緩地震所帶來之 災害與損失,政府與民間均極力投入地震防災相關研 究與工作。另外,台灣四面環海而倚重海上運輸,港 灣工程之重要性不可言喻;碼頭為港灣重要設施,碼 頭結構物本質屬於濱水擋土結構,碼頭受震破壞為常 見之大地地震災害,且常與土壤液化直接相關。1999 年集集地震中,臺中港便因大規模土壤液化而使沉箱 碼頭嚴重破壞,2018年花蓮地震中,花蓮港亦因土壤 液化而使沉箱碼頭後線沉陷且鋪面開裂。碼頭震害常 造成港灣營運功能大受影響,復原工作亦需大量經費 與時間。例如,1995年阪神地震引致之港灣損失高達 5,900 億日圓口,將對經濟造成相當大之衝擊。

為降低地震對碼頭營運造成之影響,首要之務在瞭 解碼頭構造物之實際耐震能力。近年來,國際工程技術 規範多朝性能設計(performance-based design)理念發 展;尤其是耐震設計,若針對結構物之性能目的,根據 各級地震對應之性能要求,使不同重要性之結構物能符 合相關性能規定,將能經濟有效地確保結構物於耐震性 能符合需求。因此,欲完整掌握碼頭抵抗地震之能力, 宜基於性能設計精神來評估碼頭構造物之耐震性能。

對災害應變與防災規劃而言,需瞭解地震帶來之後 果,如結構受損之狀態與數量、人員傷亡統計及地震引 致之經濟損失等。為此,可透過震災境況模擬,推估可 能之災害規模與分佈,做為震損早期評估與地震風險量 化之用。其中,工程構造物之損害評估可利用結構損害 機率與強地動參數間之關係,即易損性曲線(fragility curve),快速求得損害程度與數量。關於碼頭震損, 1995年阪神大地震為最具代表性之案例,造成神戶港 之重力式碼頭幾乎全毀;在台灣則有前述1999年集集 地震與2018年花蓮地震等案例。因此,實應基於歷年 地震資料與港灣震損情況,建立碼頭構造物易損性分析 程序,並據以進行代表性碼頭之易損性分析,以建立港 灣震損評估所需之碼頭構造物易損性曲線參數。

本研究係針對重力式碼頭,發展其耐震性能評估 與易損性分析相關方法,包含:

- 基於營運功能性,決定重力式碼頭損壞等級之定 量準則,以供性能評估之用;
- 建立並驗證基於動力分析法之受震反應分析模式,並搭配相對應之性能要求與損壞準則,評估 碼頭耐震性能;
- 利用所發展耐震性能評估法,以代表性地震紀錄 進行各種可能情境下之大量分析,歸納出碼頭構 造物損害機率與強地動需求參數間之關係,即易 損性曲線;

由於碼頭本質上屬擋土結構,其震損常與土壤非 線性行為與受震液化現象有關,故本研究將充分考慮 其影響。另外,對可能使地震致災程度趨於嚴重之場 址效應與近斷層效應,亦將適度考量之。

碼頭構造物性能等級、性能目標與損壞 準則

國際航海協會(PIANC^[2])建議將地震力等級分 為L1與L2二級,若考慮港灣構造物設計年限多為50 年,分別對應於回歸期75年與475年。另外,PIANC ^[2]建議將港灣構造物損壞等級分為四級,分別為等級I 可使用、等級II可修復、等級III接近崩塌破壞與等級 IV崩塌破壞等。為確保所設計構造物具有可接受之可 靠度或震害風險,PIANC^[2]進一步基於前述定義訂出 各性能等級構造物之性能目標,如表1所示。以國內各 主要港區(如基隆港、臺中港、高雄港、花蓮港等)而 言,其構造性能等級至少應屬A級(若受震損,將可能 導致人命與財產損失,且為震後恢復所必需者),其性 能目標係要求於L1地震下之容許損壞程度為等級I(可 使用),於等級L2地震的作用下為等級II(可維修)。

表1 國際航海協會建議之構造物性能目標[2]

構造物	設計地震等級				
性能等級	Level1 (L1)	Level2 (L2)			
S	等級 I: 可使用	等級Ⅰ:可使用			
А	等級 I: 可使用	等級Ⅱ:可修復			
В	等級Ⅰ:可使用	等級Ⅱ:接近崩塌破壞			
С	等級Ⅱ:可修復	等級 Ⅳ:崩塌破壞			

重力式碼頭係由藉自重穩定而提供擋土功能之剛 性岸壁(如沉箱或堆疊塊體)與背填土所構成,如圖1 所示。表2為PIANC^[2]建議之重力式碼頭定量損壞準 則,由於剛性擋土壁體較不易發生結構性破壞,損壞 模式主要為碼頭岸壁之過大位移及岸肩與後線之過大 沉陷,故損壞準則評估參數主要為壁體正規化水平殘 餘位移(水平殘餘位移d與壁體高H之比值)與向海 側殘餘傾角,以及岸肩差異沉陷量、岸肩與後線地表 差異沉陷量與岸肩朝海側殘餘傾角,如圖1所示。如 此一來,便可具體定義出欲達到性能目標應具備之性 能表現。須注意的是,應以各評估參數所判定之損壞 等級當中最嚴重者為準。

在 1995 年 阪 神 大 地 震 中, 神 戶 港 港 島 (Port Island) 之 PGA 達 0.54 g,造成一處重力式沉箱碼頭 水平位移高達 4~5 公尺(換算正規化水平位移超過 20%),沉陷約 1~2 公尺,外傾約 4 度^[3];由表 2 之損 壞準則,損壞等級根據差異沉陷量已超越等級 I,根據 傾角達等級 II (可修復)、根據水平位移則已達等級 IV (崩塌破壞),與實際上已完全失去功能之情況相符。 2011 年東日本大震災中,茨城港日立港區第一碼頭 (沉箱碼頭)外移 50 公分(正規化水平位移約 5%)、

	損壞等級	等級I	等級Ⅱ	等級Ⅲ	等級 IV
岸壁	正規化水平 殘餘位移 d/H	< 1.5%	1.5 ~ 5%	5~10%	>10%
	向海側 殘餘傾角	< 3°	$3\sim5^{\circ}$	$5\sim8^\circ$	> 8°
岸肩	差異沉陷量	$<0.03\sim0.1\ m$	N/A	N/A	N/A
	岸肩與後線 地表差異沉陷	$< 0.3 \sim 0.7 \text{ m}$	N/A	N/A	N/A
	向海側 殘餘傾角	< 2 ~ 3°	N/A	N/A	N/A

表2 重力式碼頭定量損壞準則[2]

外傾4度、岸肩差異沉陷30公分^[4];根據表2,屬破 壞等級II(可修復),事實上其於一個月後便完成碼頭 面整平之搶修工作,並於其後陸續完成鋪面與沉箱基 礎復舊,恢復營運功能。

由以上可知, PIANC^[2]建議之碼頭損壞準則具相 當之參考價值,用來進行碼頭構造物耐震性能評估, 結果將具可接受之代表性。

重力式碼頭受震反應分析模式

針對重力式碼頭之耐震性能評估需求,本研究採 用嚴謹動力分析法進行重力式碼頭受震反應分析,以 充分考慮土壤受震時之非線性行為與可能之液化現 象,並選用已在學術界與實務界被廣泛使用之大地工 程有限元素法(FEM)分析軟體 PLAXIS 2D^[5],其特 點在於提供許多適用於土壤之非線性組成律,可進行 大變形分析,並能考慮動態作用下超額孔隙水壓之激 發與其所引致之土壤弱化,故相當適合本研究之用途。

為能有效模擬砂質土壤於液化時之應力~應變關 係,PLAXIS 提供 UBC3D-PLM 有效應力彈塑性分析模 式,其係基於 UBCSAND 模式^[6],結合 Mohr-Coulomb 破壞準則與 Drucker-Prager 破壞準則之非關聯塑性潛 勢(non-associated plastic potential),並以動態應變硬 化關係(kinematic stain hardening rule)來改善超額孔 隙水壓之估算精度,且能考慮在液化後隨塑性應變發 展導致之土壤勁度折減,如此一來,將能有效掌握液 化發生前後之土壤行為,以合理評估破壞發展情況與 所引致之塑性變形。Brinkgreve *et al.*^[5]建議了一系列 根據 SPT-N 值決定 UBC3D-PLM 模式所需參數之經驗 式,本研究便根據所收集之碼頭基本資料,估算相關 參數作為分析輸入之用。另外,於土壤與沉箱間設有 界面元素(interface),以模擬異種材料間剪力強度之 折減,並避免界面之應力劇烈變化。

其他土壤動態分析相關考量如下:

- 採用雷利阻尼(Rayleigh damping)模擬土壤之遲
 滯阻尼(hysteretic damping),並根據輸入運動之 顯著頻率決定相關參數;
- 2. 地盤模型兩端部分區域設為線彈性,避免邊界附 近之塑性破壞;並利用 PLAXIS 之自由場(freefield)邊界降低地盤模型邊界波傳反射之不利影 響,以模擬真實地盤之半無限特性;
- 地盤反應分析常簡化為水平層狀地盤受垂直上傳 地震剪力波之作用,亦即一維土柱模式。為滿足 此假設,將地盤模型同高程之左右兩端點設定剛 性連結束制條件,使其運動一致,並將強地動於 地盤模型底部輸入,如此便能有效模擬地盤受震 行為與場址放大效應,但同時仍能容許近域因結 構與地形變化造成之動態互制效應。

重力式碼頭受震反應分析與耐震性能評 估案例

2018年2月6日,花蓮發生 M, 6.2 之強震,花蓮 市大部分區域地表最大加速度(PGA)均超過 250 gal (當時氣象局震度分級達六級),甚至有部分地點達 400 gal 以上(當時氣象局震度分級達七級),故造成數 棟建築物嚴重受損甚至倒塌,並因而造成人員傷亡。此 外,在花蓮港有數座重力式碼頭遭遇程度不等之鋪面開 裂、後線沉陷與液化噴砂。在此選用震損最嚴重的25 號碼頭作為本研究分析案例,如圖2所示,其為消波式 沉箱碼頭,位於花蓮港填海造陸形成之突堤區,於震後 其沉箱本體並無明顯向海側外移,但在與24號碼頭交 界處出現約 10 cm 之差異沉陷,顯示本碼頭沉箱之基礎 略有沉陷;於後線近沉箱本體之交界處,則產生最大 約 50~60 cm 之沉陷,並伴隨砂礫混合物隨水噴出。 根據設計斷面與災後於後線開挖確認,得知背填材料 主要為鄰近河床砂礫材料,則前述現象應與背填材料 受震液化有關 [7]。前述噴出材料約 8% 屬礫石(粒徑 > 4.75 mm),最大粒徑近10 cm,為相對少見之含礫土壤 液化現象,但因礫石含量較少,整體土壤之受震液化 行為可能還是由背填材料之砂土部分來主控。

(a) 標準斷面圖

(b) 平面位置圖

圖 2 花蓮港 25 碼頭與其於 2018 年花蓮地震之災損情況

(d)後線與沉箱交界處地表沉陷

模型分區與網格如圖3所示,根據突堤區擴建前 地質調查^[8]、碼頭設計資料及 Deng et al.^[9] 於 2018 年 花蓮地震後進行之現地鑽探與波速量測,得知地盤材 料主要包括沉箱底部與背側之堆疊塊石、後線區之背 填河床料、地表下深度約 20 m 處之礫石層、海側局部 於沉箱底部高程起有約5m厚之堅實黏土層、與深度 約30m 處之堅硬基盤, 並據以歸納地盤各分區之材料 參數如表 3。此外,雖沉箱背側設有背填塊石,但震後 觀察到沉箱與後線交界亦出現噴砂現象,研判在波浪 與潮汐長期作用下,背填土料已侵入背填塊石區並填 滿其孔隙,故在此假設其力學性質已改由背填土主控。

分析輸入地震採用花蓮港務局地震測站(HWA062) 在前述 2018 年花蓮地震(後文簡稱為 20180206 地震) 及 1999 年 11 月 2 日花東外海 M, 6.9 地震(後文簡稱為 19991102 地震) 實測紀錄,考慮碼頭走向,均採東西向 分量,如圖4所示。前者具有近斷層地震常見之長周期 脈衝,後者則屬於遠域地震,具較密集與較多之反覆作 用週數,可代表不同之震源特性。分析時,將後者放大 至與前者 PGA 相同,並由兩筆紀錄當中截取涵蓋明顯震 動與 97% 以上能量之同長度延時,如圖 3 綠色虛線間所 示;由於該測站座落於岩盤上,故直接視為基盤運動於 模型底部輸入。

首先, 觀察地盤不同位置之超額孔隙水壓比 (r,: 超額孔隙水壓與初始有效覆土應力之比值,r, = 1 表完全 液化),如圖 5。在 20180206 地震(PGA = 209 gal)作用 下,各觀測點r,值均在加速度脈衝出現時(約5~10秒 間)快速上升,此乃因該脈衝導致土壤剪應變快速發展 所致。距堤岸100m(可視為自由場)之背填土與原始礫 石層界面(B點), r_u至0.65 左右便不再上升;自由場背 填土深度約10m處(C點),r_u在10秒後上升至接近1 並大致維持恆定,表示已達液化;緊鄰沉箱旁背填土深 度約10m處(H點)可能因與沉箱本體互制之影響,

圖 3 花蓮港 25 碼頭分析模型材料分區與網格(含分析監測點)

表3分析用地盤材料性質

材料種類	γ_{sat} (kN/m ³)	<i>Vs</i> (m/s)	ν	Geq (kPa)	SPT-N	c (kPa)	ϕ (deg)
I:背填土	19.6	200	0.45	4.00×104	10	0	30
Ⅱ:背填/基礎塊石	21.6	500	0.45	1.93×105	50	0	40
Ⅲ:原始地層-黏土	19.6	250	0.45	1.00×105	20	100	0
IV:原始地層 – 礫石	21.6	380	0.45	1.11×105	50	0	40

r"變化較大,最終約達 0.7 而未液化。在 19991102 地震 (PGA 放大至 209 gal)作用下,各觀測點 r, 上升速度 不及前例,B點與H點亦未達液化,但在地震反覆作用 下,最終C點之r,仍接近1而亦達液化。

圖 6 為沉箱頂部與後線地表沉陷量,在 20180206 地震作用下,沉箱產生些許差異沉陷,並因此略向海 側傾斜,但最大沉陷量約僅 1.6 cm,較實際為小,傾角

約僅 0.03°,可視為幾乎無傾斜,可能與沉箱高寬比較 小,抗傾覆穩定性較佳有關;後線最大沉陷約 5.2 cm, 發生在與沉箱交界處,雖位置與現實相符,但沉陷量 遠小於實際之 50~60 cm。至於在 19991102 地震作用 下,沉箱最大沉陷量 2.8 cm,向海側傾斜 0.04°,後線 最大沉陷約9 cm,均大於前例,可能係由於地震規模 較大而使反覆作用週數較多,且液化範圍較大所致。

圖 6 沉箱頂部與後線沉陷分佈情況

圖 7 則為沉箱頂部(圖 4 中 F 點相對 A 點)與底部 (E 點相對 A 點)位移量比較,在 20180206 地震作用 下,沉箱頂部與底部大致均朝海側位移,並於加速度脈 衝作用時刻快速發展,並於其後隨液化發展逐漸增加, 最終頂部與底部殘餘位移分別約 6.7 cm 與 5.7 cm,頂部 位移量略大於頂部,表沉箱略向海側傾斜,頂部位移 若換算為正規化水平殘餘位移(d/H),約僅 0.33%,與 現地未觀察到沉箱明顯外移相符。至於在 19991102 地 震之作用下,殘餘位移分別約 11 cm 與 9.7 cm,(d/H) 約 0.56%,均略大於前例,同樣應與作用週數與液化範 圍之差異有關。

綜合前述分析結果,與表2對照,便可據以評估 損壞等級。在兩個地震作用下,不論根據沉箱之正規 化水平殘餘位移、向海側傾角或岸肩/後線差異沉陷量 來研判,均小於等級1上限值,故損壞等級屬於等級1

(可使用)。然而,雖然 20180206 地震之分析結果, 在土壤液化發展情況與沉箱向海側變位趨勢與實際情 況大致相符,但沉箱與後線地盤沉陷量均大幅低估。 可能是因為 PLAXIS 係由反覆剪動造成之體積應變計 算沉陷量,無法考慮因排水造成之孔隙體積縮小,由 具較多反覆作用週數之 19991102 地震導致較大沉陷量 可見一斑。花蓮地震案例中,可能因波浪與潮汐長期 作用,背填土日漸疏鬆,故在液化後孔隙大量壓縮, 而造成後線嚴重沉陷。位置相近且斷面類似之 19 號~ 24 號碼頭,後線沉陷由 < 10 cm 漸變至 40 cm ^[7],可能 便與背填土狀態差異有關。綜合以上,若以土壤液化 與否之掌握及沉箱本體受震側移量而言,本研究採用 之分析模式可視為合理。

接著,進一步基於設計地震,評估花蓮港 25 號碼 頭耐震性能是否符合需求。由於現行港灣構造物設計 基準自 1999 年以來並未針對耐震設計相關內容進行修 訂,在此參考最新版公路橋梁耐震設計規範^[10],決定 評估所需考量之地震加速度。若將 PIANC(2001)定 義之 L1 地震視為等同於等級 I(中度)地震、L2 地震 等同於等級 II(設計)地震,並考慮米崙斷層近斷層 效應,可求得花蓮港 PGA_{L1} = 0.098 g、PGAL2 = 0.387 g。由於 PGA_{L1} 小於前述分析輸入運動 PGA 值(209.2 gal),由前述結果可知碼頭損壞等級滿足 L1 地震下之 需求,故在此僅針對 PGA_{L2},將前述分析中反應較大 之 1999 年 11 月 2 日花東外海地震歷時放大至 PGA = 0.387 g = 379.6 gal 後進行分析。

圖 8 為地盤不同位置之超額孔隙水壓比 r_u 歷時曲線,各觀測點超額孔隙水壓均隨地震反覆作用而逐漸累積,B 點之 r_u增加至約 0.8 便不再上升,C 點之 r_u則持續上升至 1 左右後維持恆定,代表幾乎完全液化,H 點

可能因此例中沉箱受震反應較大,在互制作用之影響下 使r_u變化較大,但最終在1附近震盪,亦達到液化。 由圖9所示之沉箱頂部與後線地表沉陷量可知,碼頭整 體變形情況較前述驗證案例嚴重,沉箱頂部最大沉陷量 約4.2 cm,後線最大沉陷量達26.2 cm,發生在與沉箱 交界處。圖10則顯示沉箱頂部與底部均明顯向海側位 移,殘餘位移分別約20.7 cm與18.4 cm,沉箱向海側微 傾斜0.06°,頂部位移換算正規化水平殘餘位移(d/H) 約0.98%。根據表2,尚未達等級II之門檻,但由於後 線最大沉陷發生在緊鄰沉箱處,由功能性觀點可視為 岸肩差異沉陷已超過10 cm 而超越等級I上限;故根據 PIANC^[2]之建議,其損壞狀態應保守取為等級II。進一 步根據表1,若本碼頭屬於A級構造物,性能表現符合 需求,但若屬S級構造物,性能已有所不足。

圖 9 沉箱頂部與後線沉陷分佈情況: 19991102 地震 (PGA 放大至 379.6 gal)

圖 10 沉箱頂部 (Fre. A) 與底部 (Ere. A) 位移歷時曲線 : 19991102 地震 (PGA 放大至 379.6 gal)

重力式碼頭易損性分析程序

易損性曲線為描述在指定之評估參數下工程構造物 處於或超越某種損壞狀態(*d_s*)的機率,亦即損壞機率 密度函數(probability density function)之累積分佈曲 線(cumulative distribution function);若損壞機率密度 函數呈常態分佈(normal distribution)或對數常態分佈 (lognormal distribution),則易損性曲線將略呈 S 型。 由耐震性能觀點,易損性曲線之評估參數常為地震強度 參數,如 PGA,則對應某特定損壞狀態 d_s之易損性曲線可表為: P [DS≥d_s | PGA],其中,d_s常基於結構性或使用性予以定義與分級,如表 1。結構恰好落在某特定損壞狀態 ds 之機率,為兩相鄰易損曲線之差值,即:

 $P[DS = d_s | PGA] = P[DS \ge d_s | PGA]$ $|-P[DS \ge d_{s+1} | PGA]$

如此一來,若給定強地動參數值,便可求得構造 物處於各個損壞狀態之機率,進一步可用來快速推估 各損壞狀態之構造物數量,適合早期損失評估與防減 災策略擬定之用。利用所建立之重力式碼頭耐震評估 方法,針對重要港區之代表性碼頭,在各種可能之地 震情境下,進行大量分析,基於功能性觀點,根據表 2 之定量損壞準則判定損壞狀態,並經適當統計後便可 獲得易損性曲線。

在地震情境建立方面,採用之輸入運動應以具破 壞性之地震為主,參考中央氣象局震度分級定義與國 際上常用之 Modified Mercalli Scale 震度分級定義,可 能導致輕微災損之 PGA 門檻值大致可採用 25 gal。地 震規模則直接關乎地震包含之能量,亦與地震之致災 能力有關;雖然地震強度亦受震央距離影響,並非直 接與地震規模正相關,但規模大之地震通常具有較長 之延時,可能因此累積損傷而造成破壞。

綜合以上,在選取易損性分析使用之實際地震紀 錄時,應掌握以下原則:

- 依所分析之港區,收集鄰近地震測站之地震紀錄, 以有效展現地震之場址特性;並以氣象局震度四級 以上(PGA>25 gal)之地震紀錄為收集對象。
- 應涵蓋不同震源特性,例如,應同時包含近斷層地 震(在此指具有速度脈衝波形者)與遠域地震,內 陸斷層地震與板塊隱沒帶地震,以及極淺層地震 (震源深度大於 30 公里)與相對深源地震等。
- 3. 依地震規模予以分類,初步依中央氣象局定義, M_L ≤ 3.0 者屬微小地震(然而其通常不造成災損), $3.0 < M_L \leq 5.0$ 者屬小地震, $5.0 < M_L \leq 7.0$ 者屬中地 震,等於或 $M_L > 7.0$ 者屬大地震。

將所收集之地震紀錄,依規模分類縮放至不同震 度。考慮到小規模地震因釋放能量較小,不至於造成 較大之 PGA 值,若將其過度放大作為輸入運動,並不 盡合理;但大規模地震於距離震央較遠處,PGA 亦會 衰減至較小值,因此,將 $M_L \leq 5.0$ 者縮放至 PGA = 0.1 $g \sim 0.5 g$, $5.0 < M_L \le 7.0$ 者與 $M_L > 7.0$ 者均縮放至 PGA = 0.1 g ~ 1.0 g, 如此便可獲得大量地震輸入運動,以供 進行多種情境之受震反應分析。

PIANC^[2]之重力式碼頭損壞準則中,僅正規化 水平殘餘位移(d/H)與向海側殘餘傾角等兩個評估 參數於各個損壞等級均有明確量化定義,且根據實際 地震案例,重力式碼頭受震滑移的現象常較傾斜為明 顯,故在此將以前者主要損壞評估參數,後者為次要 參數。損壞機率之計算,係假設重力式碼頭於某特定 PGA下,擋土壁體正規化水平位移(或傾角)呈對數 常態分佈,其機率密度函數可表為:

$P(x) = \frac{1}{x\sigma\sqrt{2\pi}} exp$	$\left[-\frac{1}{2}\left(\frac{\ln z}{2}\right)\right]$	$\left[\frac{x-\mu}{\sigma}\right]^2$
---	---	---------------------------------------

其中, *x* 表正規化水平位移值(或傾角), μ 為 *ln x* 之 平均值(或中位數), σ 為 *ln x* 之標準差。

由於本研究提出之耐震性能評估模式在沉箱側移 反應可獲得較合理之結果,且能考慮對沉箱殘餘位移 有相當影響之土壤液化現象,因此適合用來進行建立 易損性曲線所需之大量境況分析。

由分析結果計算出其對數常態分佈參數 μ 與 σ 後, 便可由表 2 各損壞等級對應之正規化水平位移(或傾 角)門檻值,計算出不同 PGA 下超越各損害等級的條 件機率,即易損性曲線。若損壞機率密度函數呈對數常 態分佈,則其累積分佈曲線(即易損性曲線)可表為:

$$F(a) = \Phi\left(\frac{\ln a - \mu_a}{\sigma_a}\right)$$

其中, a 表 PGA 值, μ_a 為 $\ln a$ 之均值(或中位數), σ_a 為 $\ln a$ 之標準差, Φ 為標準常態分佈累積分佈曲線。

如此則所得到之易損性曲線可利用線性迴歸取其 最佳化近似的對數常態分佈參數 μ_a 與 σ_a,用此二參數 將易損曲線以對數常態分佈累積分佈曲線標準化,將 有助於震損早期評估之快速運算需求。

重力式碼頭易損性分析案例

本節將說明花蓮港 25 號碼頭易損性分析之相關細 節與成果。表 4 列出所採用之 10 筆地震紀錄,係由距 花蓮港最近之花蓮氣象站(HWA, HWA019)與花蓮港 務局(HWA062)等兩個氣象局地震站取得。當中有 5 筆其測站距震央約 12 km 以內,若根據現行建築物耐 震設計規範^[11],對花東地區斷層而言可視為近斷層地

表4 花蓮港25號碼頭易損性分析用地震紀錄

щ	36년 그는	비가 다바(ITT)	PGA(gal)			震央距	震源深	мт
#	测站	日刑(UI)	V	NS	EW	(km)	(km)	WIL
1	HWA019	1995/11/26	24.6	95.1	67.2	2.25	6.4	4.2
2	HWA019	1999/09/20	46.9	133	126	81.6	8.0	7.3
3	HWA019	1999/11/01	31.3	132	118	69.2	31.3	6.9
4	HWA	2000/09/10	78	1312	157	12.2	17.7	6.2
5	HWA062	2001/06/30/	52.5	52.1	23.1	10.6	23.4	5.0
6	HWA019	2002/03/31	18.7	42.5	52.3	62.3	9.6	6.8
7	HWA062	2003/08/10	10.9	32.5	40.7	16.3	11.0	4.9
8	HWA019	2003/06/10	13.9	72.0	64.4	53.3	32.3	6.5
9	HWA062	2013/10/31	25.3	58.0	50.8	53.5	15.0	6.4
10	HWA062	2018/02/06	214	203	209	17.5	6.3	6.2

震;震源深度由6km左右分佈至30km以上,當中有 8筆屬極淺層地震;此外,其中2筆屬小地震、7筆屬 中地震、1筆屬大地震。表4之地震情境涵蓋不同震源 特性(近斷層與遠域、不同震源深度)與不同地震規 模,符合前節所述之選取原則。

在此採用如圖 3 之花蓮港 25 號碼頭受震反應分析 模型,根據前節所述方式,將表4之地震紀錄進行縮 放之後,分別作為輸入運動進行動態受震反應分析。 須注意的是,花蓮港場址之地盤放大效應並不明顯, 故雖然前述輸入運動係於模型底部,亦即基盤之位置 輸入,但其最大加速度可概略直接視為定義易損性曲 線所需之地震強度參數:PGA。將分析所得結果,依 表2所列之重力式碼頭定量損壞準則決定出損壞等級 II、等級 III 與等級 IV 所對應之沉箱頂部位移門檻值, 則基於壁頂位移呈對數常態分佈之假設,便能根據分 析結果統計出各 PGA 下超越每個損害等級之條件機 率,而獲得花蓮港25號碼頭之易損性曲線;進一步假 設各不同損壞狀態之易損性曲線可標準化為對數常態 分佈之累積分佈曲線,利用迴歸分析求取其所對應之 對數常態分佈參數 μ_a 與 σ_a ,便能夠以此二參數近似描 述各易損性曲線。

分析所得易損性曲線與其標準化參數分別如圖 11 與表 5 所示;其中,中度損壞(moderate)之易 損性曲線係對應到損壞等級 II 之門檻值,嚴重損壞 (extensive)者係對應到損壞等級 III 之門檻值,完全 損壞(complete)者則對應到等級 IV 損壞之門檻值。 由圖可知,當 PGA = 0.387 g(PGA₁₂)時,損壞狀態超 越等級 I 之機率近 20%,超越等級 II 之機率僅 1.5%, 與本碼頭應具備之耐震性能相符;當 PGA = 0.5 g 時 (略大於 2018 花蓮地震於太魯閣觀測到之最大 PGA 0.491 g),損壞狀態超越等級 I 之機率近 30%,約有

表5 花蓮港25號碼頭易損性曲線標準化參數

破壞狀態	exp (µa) (PGA之中值[單位:g])	σa
Moderate (等級Ⅱ損壞之門檻值)	0.58	0.56
Extensive (等級 III 損壞之門檻值)	2.11	0.74
Complete (等級 IV 損壞之門檻值)	14.1	0.92

3%的之機率超越等級 II;當 PGA 高達 1.0 g 時,有高 達 83% 之機率會超越損壞等級 I,約 14% 之機率超越 等級 ΙΙ。若利用迴歸所得之參數 μ。與 σ。, 以對數常態 分佈之累積分佈曲線估算 PGA = 209.2 gal = 0.213 g 時 (即 2018 花蓮地震於花蓮港測得之 PGA) 之各損壞狀 態機率,可求得損壞狀態超越等級 I 之機率約 3.7%, 超越等級 II 之機率僅 0.1%,與港區碼頭實際受損數量 與程度大致在同一數量級,證明所得易損性曲線尚屬 合理。另外,可發現即便在 PGA = 1.0 g 的情況下,達 到等級 IV 破壞的機率仍趨近於 0,可能是因為本碼頭 場址之原始土層屬堅實礫石層,因此即使後線背填土 發生大範圍液化,尚不致使碼頭之擋土壁體產生對應 等級 IV 破壞之大位移量。此外,所採用之 PLAXIS 有 限元素法分析軟體屬於連續體分析模式,雖然提供界 面元素,但其無法容許過大相對變位,故分析時僅能 模擬土體之反覆受剪變形,而較難以重現沉箱式碼頭 擋土壁體因強烈地震發生極大量滑移之情況。

結論

PIANC^[2]建議之重力式碼頭損壞準則,經案例回 顧證明為合理,可供耐震性能評估之用。 基於有限元素動力分析法,提出考慮土壤液化影響 之重力式碼頭受震反應分析法,透過本土碼頭震損案例 進行驗證,並搭配碼頭損壞準則,建立耐震性能評估程 序,藉此可合理掌握重力式碼頭之實際耐震性能。

進一步建議重力式碼頭易損性分析程序,以代表 性地震紀錄進行各種可能情境下之大量分析,利用統 計方法歸納分析成果,可獲得碼頭損壞機率與強地動 需求參數間之關係,此即為易損性曲線,可供快速評 估震損程度與數量之用,也可供港灣管理單位於碼頭 維運實務中運用。

誌謝

本研究承蒙科技部 108 年度「災害防救科技創新 服務方案」研究計畫惠予補助,計畫編號:MOST 108-2119-M-006-009-,特此申謝。

參考文獻

- Sumer, B.M., Ansal, A., Cetin, K.O., Damgaard, J., Gunbak, A.R., Hansen, N.E.O., Sawicki, A., Synolakis, C.E., Yalciner, A.C., Yuksel, Y., and Zen, K. (2007), "Earthquake-induced liquefaction around marine structures", Journal of Waterway, Port, Coastal, and Ocean Engineering, 133(1), 55-82.
- PIANC (World Association for Waterborne Transport Infrastructure) (2001), Seismic design guidelines for port structures, A.A. Balkema Publishers, Lisse, Netherlands.
- 3. Iai, S. (1998), "Rigid and flexible retaining walls during Kobe earthquake", 4th International Conference on Case Histories in Geotechnical Engineering, St. Louis, MO.
- 宮島正悟、小泉哲也、宮田正史、竹信正寬、坂田憲治、淺井茂 樹等(2015),平成23年(2011年)東北地方太平洋沖地震によ る港灣施設等被害報告,港灣空港技術研究所。
- Brinkgreve, R.B.J., Kumarswamy, S., Swolfs, W.M., Zampich, L.M., and Ragi Manoj, N. (2019), PLAXIS 2D 2019, Plaxis bv, Delft, Netherlands.
- Beaty, M.H. and Byrne, P.M. (1998), "An effective stress model for predicting liquefaction behaviour of sand", Geotechnical Earthquake Engineering and Solid Dynamics, ASCE Geotechnical Special Publication 75, 766-777.
- Ko, Y.Y., Hsu, S.Y., Yang. H.C., Lu, C.C., Hwang, Y.W., Liu, C.H., and Hwang, J.H. (2019), "Soil Liquefaction and Ground Settlements in 6 February 2018 Hualien, Taiwan, Earthquake," Seismological Research Letters, 90(1), 51-59.
- ei
 8. 中華顧問工程司(1976),花蓮港擴建工程土壤鑽探、試驗與震 波探測報告。
- Deng, Y.C., Lu, C.C., and Hwang, J.H. (2019), "A discussion on the damage mechanisms of Hualien Harbor in 20180206 Hualien Earthquake", International Conference in Commemoration of 20th Anniversary of the 1999 Chi-Chi Earthquake, Taipei.
- 交通部(2018),公路橋梁耐震設計規範,民國108年1月14日 頒布。
- 11. 內政部(2011),建築物耐震設計規範及解說,民國 100 年 1 月
 19 日修正頒布。

63