

劉光晏/國立成功大學土木工程學系 副教授林秉緯/國立成功大學土木工程學系 碩士 鍾興陽/國立成功大學土木工程學系 副教授 洪崇展/國立成功大學土木工程學系 制教授 施健泰/施健泰土木技師事務所 負責人 黃世建/國立臺灣大學土木工程學系 特聘教授 李其忠/內政部建築研究所防火實驗中心 主任 雷明遠/內政部建築研究所安全防災組 研究員 蔡綽芳/內政部建築研究所工程技術組 組長

本研究係探討火害後的鋼筋混凝土(RC)造構架屋的耐震能力,分別以實驗及分析方式進行研究。本 研究團隊將使用 109 年度由建築研究所已委託製作完成之 2 座單層單跨 RC 造構架屋,一座為未受火害試 體僅探討受震反應,另一座先內政部建築研究所防火實驗中心戶外場地進行火害實驗,模擬 RC 造構架屋 在火場中可能受到的高溫變化,完成後再運至鄰近的國家地震中心台南實驗室,2座試體可分別進行未受 火害和受火害 RC 構架屋之振動台實驗,獲致火害後 RC 造構架屋的耐震能力影響。基於前述實驗成果, 本研究亦進行受火害與未受火害單層單跨 RC 造構架屋受地震之數值模擬,相關成果將研擬 RC 造火害後 耐震能力評估流程。

關鍵詞:鋼筋混凝土造、鋼構造、火害、振動台實驗、耐震性能

研究動機與目的

根據內政部消防署統計,110年全國建築物火災 共發生5,994件,其中造成161死亡,經濟損失高達 9千4百萬新台幣。然而,台灣位於歐亞大陸與菲律 賓海板塊交界處因而地震頻繁,其中包括1999年的 集集地震、2016年的美濃地震等都是建築物倒塌而造 成死亡人口數眾多的地震,而火害後的建築物是否能 夠抵抗強震而屹立不搖,為建築物受複合式災害之重 要議題。 本研究主要在探討 RC 造建築物發生嚴重火災後之 耐震能力,共製作兩座單層單跨 RC 構架屋。第一座 為無火害對照組(NF),第二座為火害實驗組(F), 利用長衝程高速度地震模擬振動台輸入地震波並量測 試體之加速度、位移歷時變化,以了解火害後結構週 期、構件行為與耐震能力。本研究由火害實驗換算等 值火害延時,據以提出混凝土強度與斷面慣性矩折減 係數,最終進行地震歷時分析,檢討層間位移與加速 度歷時反應。本研究係針對鋼筋混凝土造構架屋,進 行火害後建築物之結構耐震性能評估研究,以實際瞭 解火害後建築物之耐震能力。

因此,本研究利用 109 年已製作之 RC 構架屋 ^[1], 於內政部建築研究所防火實驗中心戶外場地進行火害 實驗,以模擬 RC 構架屋在火場中所受到高溫影響,之 後再運至鄰近的國家地震中心台南實驗室,進行未受 火害和受火害 RC 構架屋之振動台實驗,進一步進行火 害後單層單跨構架之振動台實驗,藉此發展火災後建 築物之振動台實驗技術方法與流程,並建立有系統的 火害後建築物之結構耐震性能評估方法,且研究火災 及地震之多重性災害對建築物之影響。此外,本研究 同時進行受火害與未受火害單層單跨 RC 造構架屋受地 震之數值模擬,最後研擬完成鋼筋混凝土造火害後耐 震能力評估流程。

鋼筋混凝土構架屋振動台實驗規劃 試體設計

本研究共製作兩座 RC 造單層單跨構架屋,其中 一座為無火害對照組(NF),另一座為有火害實驗組 (F),依據內政部營建署 100 年版混凝土結構設計規 範(土木 401-100)^[2] 進行設計。混凝土設計抗壓強度 為 210 kgf/cm², 實測值為 266 kgf/cm²。主筋號數包括 D19 與 D25,箍筋及版筋之號數包括 D10 及 D13。所 有鋼筋材質與設計降伏強度皆為 SD 420 W, 實測強度 分 別 為 4,689 (D10)、4,322 (D13)、4,597 (D19) 與 4,607 kgf/cm² (D25)。

圖 1 所示為立面圖與平面圖,X、Y 平面各有一 跨,跨徑皆為 3.5 m,構件尺寸、配筋如表 1 所示。梁尺 寸為 30 cm × 30 cm × 350 cm,保護層厚度 5 cm,總高度

Member	ID	Size (mm)	Longitudinal reinforcement	Lateral reinforcement
Deem	2B1	$250\times 500\times 4000$	4-D19	D10@100
Beam	2G1	$250\times 500\times 4000$	4-D19	D10@100
Column	1C1	$300\times300\times4000$	8-D25	D10@70
Elson harm	FB1	$400 \times 500 \times 4000$	4-D19	D10@120
Floor beam	FG1	$400 \times 500 \times 4000$	4-D19	D10@120

表1 RC 造構架屋構件設計資料

400 cm。柱尺寸為 30 cm × 30 cm × 350 cm,保護層厚度 5 cm,總高度 400 cm。地梁尺寸 40 cm × 50 cm,保護 層厚度 5 cm。試體底部配置獨立基腳,尺寸為 70 cm × 70 cm × 50 cm,其下方設有一鋼底版,使柱主筋可銲接 在此底版上。試體製作期間,利用高強度錨定螺栓固定 此鋼底版於經整平之鋼施工平台上。樓版厚度為 18 cm, 鋼筋配置為雙層雙向 D13@150 mm。樓版內埋 20 個內 徑 7 cm PVC 套管,以利上方固定載重塊。載重塊尺寸 為 4 m × 4 m × 1 m,壁厚 1 m,由國家地震工程中心提 供。樓版及載重塊之組合可調整總載重,使每根柱之軸 壓力達 $0.1f'_{c}$ Ag。

火害實驗規劃

火害條件以構架屋內堆疊木柴後燃燒,模擬實際結 構火害狀況。本研究所採用之設計火載量依據文獻^[3]所 記載之辦公室最大火載量,選擇 1,279 MJ/m² 為設計火 載量,則 RC 構架屋所需之總火載量為 19,453.6 MJ。 另根據趙翊翔^[4] 實驗中所使用之阿拉斯加雲杉作為燃 料,木材熱值為 15.1 MJ/kg、尺寸為 3 cm × 3.5 cm × 90 cm、單位重為 500 g,共需 2,577 根阿拉斯加雲杉木 條。本研究將木材分為四堆置放於 RC 構架屋之四個 角落,如圖 2 所示,每個角落各一堆,每堆木框架共 64.5 層,每層有 10 支木條,皆以 3.5 cm 的邊為高堆疊 在 93 cm × 93 cm × 40 cm 之鋼架上。為防止目標區塊以

圖 2 木框架堆置情況

圖 3 隔熱白磚圍封與開口

圖4 熱電偶計

外受到火害實驗影響,本研究使用 ALC 輕質白磚作為 隔熱材料,並以地梁的邊為界築起白磚牆,並留 110 cm × 210 cm 的開口作為通風口,如圖 3 所示。

為量測鋼筋混凝土造構架屋內部受到木柴燃燒加 熱至自然冷卻期間內的溫度變化,本研究於構件內 預先埋設K型熱電偶計,其可測溫度範圍介於0至 1,250°C。為了量測塑鉸區間的溫度變化,在距離梁柱 接頭表面10 cm的混凝土斷面及鋼筋斷面上布設熱電偶 計。本研究為量測空間中的溫度變化故設置空間熱電 偶樹,每條鐵鍊在預設高程先綁好熱電偶計如圖4所 示,共有5個高程。

振動台實驗規劃

本實驗選取兩筆具有代表性的地震歷時,分別為 1940年美國 EL Centro 地震及 2016年美濃地震 TCU063 南北向地表加速度,如圖 5 與圖 6 所示。其中,TCU063 震波具有近斷層地震之速度脈衝。實驗時先輸入 30 gal 白噪訊號進行系統識別,頻率範圍為 0.1 至 30 Hz,以識 別結構物基本頻率。強震測試由最大地表加速度(Peak Ground Acceleration, PGA)為 0.1 g開始,加速度增量依 試體變形程度而定,直到樓層間相對位移達柱高 3%(90 mm),或稱為層間位移角達 3% 時實驗終止。

本研究於無火害 NF 試體內埋設鋼筋應變計,量測 梁柱接頭區之鋼筋應變值。梁、柱接頭表面起算 10、 30 及 50 cm 的斷面黏貼主筋的應變計。同時,靠近 黏貼斷面的箍筋上配置一片應變計,在柱主筋方面為 了量測受到振動所產生的最大鋼筋應變值,因此在振 動方向的兩側角隅主筋及中間主筋上各配一片以進行 對照;梁斷面內在最外側主筋上各配置一片鋼筋應變 計,其配置如圖 7 所示。

鋼筋混凝土構架屋火害後之耐震能力研究

圖 5 EL Centro 加速度歷時與正規化反應譜

本實驗之加速規配置、方位及名稱如圖 8,取樣頻 率為 512 Hz。振動台平面、基礎上方配置 3 顆 2 g加 速規,樓板高程設置 3 顆 10 g加速規。其中,1F_S 及 Plate 兩加速規用於量測後續分析之輸入波及輸出波。 本實驗之位移量測係使用日本 Optitrak 公司所開發的 MOCAP 光學量測系統,藉由相機捕捉每個反射球反射 回來的紅外線,再藉由兩台以上相機對同一顆反射球 進行三維座標定位,取樣頻率為 100 Hz。MOCAP 量測 四支角柱之側向位移,並將淨高 300 公分的角柱切成 4 等分,並以沿著柱邊黏貼,總共貼三面。反射球主要 分布如圖 9 所示,共計 10 條柱線,每條柱線有 5 個反

射球。此外,地板上黏貼6顆反射球可量測振動台面 位移。東、西面梁中心各貼一顆用以量測樓板側向位 移。基礎底版黏貼2顆,可檢查基礎底板與振動台間 之相對滑移,總共20個點位。無火害 NF 試體及有火

火害及振動台實驗之結果與探討 火害實驗結果與討論

害 F 試體之實驗配置,如圖 10 與圖 11 所示。

圖 12為 F 試體之火害實驗進程,分為閃燃、完 全燃燒、木材倒塌、停止燃燒等 4 個主要階段。本次 實驗結果,梁表面、保護層內側、中心混凝土之最

圖 10 NF 試體振動台實驗配置

高溫分別為478℃、229℃及106℃;鋼筋最高溫為 200°C。柱表面、保護層內側、中心混凝土之最高溫 分別為 360~500°C、255°C 及 135°C;鋼筋最高溫為 191℃。樓板底部表面最高溫達 613°C,保護層內側最 高溫為 327°C。

F 試體在無額外載重塊加載條件下燃燒,裂縫紀錄 如圖 13 所示。損壞最明顯處是角隅混凝土剝落,其主 要原因為同時承受兩個方向的溫度傳遞,導致其溫度 變化程度較高,熱膨脹較為劇烈進而導致破壞剝落。

圖 11 F 試體振動台實驗配置

角隅剝落現象主要位於柱中央段,其主要原因為木框 架燃燒之高程正好在柱底以上 40 cm 至柱頂的區間。

圖 14 所示為空間熱電偶樹所量測之溫度總平均 圖。由圖中可知前 3.000 秒內有兩次峰值產生,原因 為木框架於不同時間點產生大量燃燒,並於二次燃燒 後穩定直到產生悶燒蓄熱現象,導致後續溫度呈現平 台段且延時長,約莫達14,000秒後開始降溫,降溫速 率約為 2.4°C/min,直至 20,000 秒空間平均溫度約降至 100°C °

(a) 閃燃

圖 12 F 試體火害實驗主要過程

圖 13 F 試體火害後柱表面裂縫及混凝土剝落

圖 14 F 試體火害溫度延時曲線與 ISO834 標準升溫曲線比較圖

本研究參考 Inberg^[5] 之溫度等效面積法,並比對 ISO834 標準升溫曲線^[6] 以求取等效時間及等效溫度。 由圖 14 取 3 個點,分別對應 A 點為溫度上升速率減緩 點、B 點為最高溫度點,及 C 點為溫度降至 300°C 點。 由圖 24 在 300°C 以上所圍成的面積,與 ISO834 曲線所 圍面積相等原則,可得等效火害延時 167 分鐘(2.78 小 時)及等效溫度 1,099°C,如表 2 所示。

表 2 F 試體平均空氣溫度與 ISO834 標準升溫曲線等效關係

時間點	編號	平均空氣 溫度曲線	ISO834 標準 升温曲線
升温速率减缓	А	697 秒,697°C	630 秒,686°C
最高温出現	В	1,504 秒,794°C	1,290 秒,792°C
降至 300°C	С	14,414 秒,300°C	10,060 秒,1,099°C

振動台實驗結果與討論

根據白噪試驗之加速度量測結果,分別以振動台面 與2樓樓板之加速度作為輸入與輸出訊號,將其以快速 傅立葉轉換後再相除取為頻率響應函數,由峰值所對應 的橫坐標即為結構自然頻率。無火害 NF 試體受強震前 之週期為 0.48 sec,實驗終止時(TCU063 組別,PGA = 0.185 g)之週期為 1.06 sec。有火害 F 試體受強震前之週 期為 0.80 sec,實驗終止時(TCU063 組別,PGA = 0.125 g)之週期為 1.11 sec。如將 NF、F 試體皆視為單自由度 剪力屋架系統,F試體受強震前之初始側向勁度相較於 NF試體,因為火害關係折減 64%。無論 NF或F試體, 地震引致的結構損壞均造成結構周期延長,F試體在較 小的震動作用下,結構週期就與 NF 相近。

NF 試體在 TCU063, PGA = 0.2 g 時發生接頭剪力 破壞,所有平行振動方向之接頭出現 X 形裂縫,如圖 15 所示。F 試體在 TCU063, PGA = 0.125 g 時發生相同破 壞模式,但裂縫數量較少。經檢討接頭剪力破壞與「接 頭剪力容量係數」有關,現行混凝土結構規範(土木 401-100)^[2] 採用 3.2,但預計 111 年頒布新規範草案(土 木 401-110)^[7] 修正為 2.1。本實驗於規設階段採用現行 規範,接頭剪力容量與剪力需求比值尚屬核可,但如以 新規範檢核則有所不足,確實有剪力破壞發生的疑慮。

表 3 所示為地震輸入與結構反應關係。當 EL Centro, PGA = 0.1g時, F 試體與 NF 試體之層間位移分 別為 16.24 mm、26.56 mm,放大 1.63 倍;當 TCU063, PGA = 0.1g時, F 試體與 NF 試體之層間位移分別為 18.21 mm、47.11 mm,放大 2.6 倍。圖 16 及圖 17 分別 顯示 EL Centro 震波與 TCU063 震波,火害前、後 PGA 與層間位移關係,可觀察火害後初始勁度有顯著折減。 TCU063 震波作用下,以樓層相對位移達 90 mm (層間 位移角達 3%)作為實驗終止條件,PGA 由 0.184 g 降為 0.134 g,整體耐震能力下降 27%,折減幅度非常顯著。

圖 15 NF 試體梁柱接頭剪力破壞 (TCU063, PGA=0.2g)

Specimen	Input ground motion	Target PGA (g)	Achieved PGA (g)	Roof Acc. (g)	Inter-story drift (mm)	Inter-story drift ratio (%)
	EL Centro	0.1	0.079	0.168	16.24	0.5
	TCU063	0.1	0.094	0.174	18.21	0.6
NF	EL Centro	0.2	0.164	0.299	38.27	1.3
	EL Centro	0.2	0.183	0.341	48.28	1.6
	TCU063	0.2	0.184	0.483	91.86	3.1
	EL Centro	0.1	0.089	0.162	26.56	0.9
	TCU063	0.1	0.094	0.243	47.11	1.6
F	EL Centro	0.125	0.092	0.227	42.79	1.4
	EL Centro	0.125	0.112	0.264	51.75	1.7
	TCU063	0.125	0.134	0.383	98 64	33

表3 NF與F試體之地震輸入與結構反應

實驗結果與 ETABS 數值模擬比較 ETABS 模型設定

本研究使用 ETABS 軟體進行模擬,依照前述構件 尺寸及材料強度進行建模。混凝土彈性模數依照土木 401-110 規範草案 ^[7],設定為 12000 $\sqrt{f_c}$ 。質量塊以均 佈載重及均佈質量的方式放置在樓板上,總重量為 66 tf。樓板假設為剛性樓板,材質採用 Membrane。

NF 試體之分析模型,分別採用 ASCE 41-13^[8] 及 系統識別結果來設定強軸慣性矩及剪力面積之折減係 數。ASCE41-13 模型,當軸壓力比小於 0.1 時,柱之慣 性矩與剪力面積折減係數分別為 0.3 與 0.4。梁之慣性 矩與剪力面積折減係數分別為 0.7 與 0.4。

針對系統識別模型,由於試體頂部有質量塊束

制,使本次單層單跨構架屋近似剪力屋架,並無梁之 軸向變形及樓板之旋轉,故將折減係數指定給柱構 件。PGA = 0.1g時,柱之慣性矩及梁柱接頭剛域折減 係數,分別為0.56與0.5。PGA = 0.2g時,柱之慣性 矩及梁柱接頭剛域折減係數,分別為0.298與0,以反 應系統識別之週期及接頭剪力破壞。

F 試體之分析模型,僅使用系統識別模型,未使用 ASCE 模型。針對 30 × 30 cm 柱斷面,首先依據前述等 效火害延時(167分鐘),採用 Eurocode 2⁹⁹ 附件 A.15 推估得等溫線圖如圖 18 所示,其次,依據附件 B 的 500 度等區間法,將 500 度以上之混凝土視為無強度, 並保留 500 度以下面積混凝土的原始強度。本研究進 行參數分析,如圖 19 所示,紫色區塊為保留原始強度 之混凝土斷面,定義 Model 1 為圓弧斷面、Model 2 為 方形斷面,及 Model 3 為截角斷面。各斷面之慣性矩 與原始 30 × 30 cm 斷面慣性矩之比值,分別為 0.52、 0.54 及 0.50, 方形斷面最大、圓弧斷面次之、截角斷 面最小。當獲得前述考慮火害之慣性矩折減係數,以 TCU063 組別為例,搭配 PGA = 0.1 g及 0.125 g時 NF 試體系統識別之係數分別為 0.56 及 0.5, 相乘後即可獲 得同時考慮火害及地震後之柱慣性矩折減係數,梁慣 性矩修正係數則保留 0.7 未做修正,如表 4 所示。火害 後混凝土強度應予以修正,採用 Model 1 面積與全斷面 積比值,抗壓強度取為實測值 0.67 倍。

表4 F 試體受 TCU063 地震作用時梁、柱撓曲慣性矩折減係數

Momhor	I	PGA = 0.1	z	PGA = 0.125 g			
Member	Model 1	Model 2	Model 3	Model 1	Model 2	Model 3	
Column	0.29	0.30	0.28	0.26	0.27	0.25	
Beam	0.7						

NF 試體分析結果與實驗結果比較

圖 20 至圖 21 所示分別為 NF 試體, 地震輸入分別 為 EL Centro 或 TCU063 且 PGA = 0.2 g 之分析值與實驗 值比較結果。針對 EL Centro 組別, ASCE 模型有高估 加速度與層間位移的現象。針對 TCU063 組別, ASCE 模型之週期因接近實測結果, 歷時波型較為擬合, 但前 期主震波之位移仍有過大的現象發生。系統識別模型在 震波峰值過後則有不擬合的現象, 原因是波峰後結構內 部損傷導致實際結構勁度下降週期變長, 以至於分析模 型無法擬合波峰後之歷時曲線。整體而言, 無論是 EL Centro 或 TCU063 地震輸入, 系統識別模型所得之屋頂 加速度及層間位移, 仍較 ASCE 模型準確。

F 試體分析結果與實驗結果比較

F 試體之分析值與實驗值比較結果,以輸入地震為 TCU063,PGA = 0.125 g 為例,TCU063 震波實驗時因已 承受 EL Centro 實驗導致結構內部損傷累積使結構週期變 長,Model 3 所代表的截角斷面其慣性矩折減係數最小, 較可有效擬合實驗結果,如圖 22 所示。經分析誤差比 較,Model 3 的誤差最為均匀且控制在 10% 內,故建議可 依 Model 3 截角斷面,計算火害後斷面慣性矩折減係數。

實驗結果與 OpenSees 數值模擬比較 OpenSees 模型設定

本節使用有限元素分析軟體 OpenSees^[10] 分析 RC 構架屋於火害前受地震力行為模擬之結果,期望能建 立一簡化亦不失精準性之數值模型用於模擬未火害試 體之實驗,進而透過分析結構物受振位移歷時與最大 層間位移角來評估 RC 結構物模型之精確性。

圖 20 層間位移分析值與實驗值比較(EL Centro, PGA = 0.2 g)

本研究使用 OpenSees 建立數值模型進行有限元素之 非線性分析,採用火害實驗所獲得之溫度資料,將斷面受 火後強度以日本建築學會 AIJ^[11] 防火守則之材料強度折減 率進行模擬,以分析受火後實驗試體之殘餘強度,並進行 火害前後構架屋之動力分析。本研究在 OpenSees 中建立 鋼筋混凝土構架屋數值模型,以 OpenSees 內建之非線性 梁柱元素(Displacement based beam column element)為基 礎,使用梁柱元素模擬構架非線性行為,模型如圖 23 所 示。元素採用纖維斷面(fiber section)並切割成多塊斷面 元素,建立由鋼筋與混凝土構成之複合斷面,描述構架斷 面彎矩與曲率關係,其示意圖如圖 24,鋼筋與混凝土材 料之定義皆選用 OpenSees 之內建材料卡。

由於 OpenSees 內建之梁柱接合點是使用端點力去 進行結構力學傳遞之模擬,為求模擬內容之精確性,本 章研究將 OpenSees 內建之梁柱接頭(Joint 2D element) 元素設立於數值模型圖 23 之 Sketch A 處,將接頭之剪 力反應納入構架受力行為。圖 25 為梁柱接頭之破壞行 為示意圖,圖 26 為 Joint2D 梁柱接頭元素模型,其中 央有一旋轉彈簧用於定義接頭剪力強度,側邊之旋轉彈 簧用於模擬鋼筋滑移,接頭之定義尺寸則與實際尺寸 相同。中央之旋轉彈簧使用 OpenSees 內建 Pinching4 材 料卡,由修正壓力場理論(Modified Compression Field Theory)之計算結果定義接頭之剪力行為,模擬鋼筋滑 移之側邊旋轉彈簧則使用內建彈性單軸材料卡(Elastic Uniaxial Material)進行設定。

由於纖維斷面無法考慮剪力與鋼筋滑移對斷面造 成之影響,若僅使用梁柱元素只能模擬構架撓曲之變 形。因此,本研究之數值模型於圖 23 Sketch B 處設置 零長度元素(zero length element),其串聯剪力彈簧、 旋轉彈簧與軸向彈簧,用以描述柱構件受剪與柱端 鋼筋滑移之影響。剪力彈簧使用 OpenSees 內建 Limit State Material 材料模型,其可以考慮遲滯行為以及重載

路徑,並連結 Shear Limit Curve 定義彈簧剪力破壞之曲 線點。旋轉彈簧與接頭相同,使用內建彈性單軸材料 卡(Elastic Uniaxial Material)進行設定。軸向彈簧之 用途僅為於零長度元素上傳遞軸向力,因此使用強度 極高之內建彈性單軸材料卡模擬傳力之剛性體。

針對火害後之結構,全斷面折減法之流程即為將整 個受火斷面之溫度設定為斷面表層之最高溫度,材料之 折減率亦參考表5^[11],統一以斷面之最高溫度進行折減。 全斷面折減法模擬之示意圖如圖27所示。此法於運用上 非常直接,但也因為全斷面皆設定為斷面之最高溫度而 非常保守,其可行性將於後段驗證。此方法僅需使用最 外圍溫度,因此為最快速模擬受火後斷面溫度之方法。

本節之火害後構架屋數值模型元素、材料參數設 定細節以及計算流程皆參考前述內容,唯各構件元素 與斷面之材料皆以前述驗證之全斷面折減法進行火害 後斷面模擬。簡化各構件火害之溫度資料,為使用全

T(°C)	Condition	20	100	200	300	400	500	600	700	800
õ (1 (Hot	1.00	0.80	0.97	0.94	0.85	0.66	0.51	0.39	0.15
Comp. strength ratio	Residual	1.00	0.94	0.87	0.80	0.64	0.48	0.32	0.16	0.00
Strain ratio at peak stress	Hot	1.00	1.00	1.10	1.47	1.84	2.21	2.58	2.95	4.30
	Residual	1.00	1.00	1.00	1.38	1.76	2.14	2.52	2.90	3.28
Electic mechalus actic	Hot	1.00	0.80	0.68	0.57	0.45	0.35	0.25	0.15	0.075
Elastic modulus ratio	Residual	1.00	0.85	0.70	0.50	0.30	0.15	0.08	0.04	0.00
Tensile strength ratio	Hot	1.00	0.96	0.89	0.79	0.66	0.50	0.32	0.25	0.22

表 5 AIJ 常重矽質骨材混凝土—溫度對應性質變化率

斷面折減法,本小節取用梁與柱構件之表層溫度做為 梁、柱、與接頭之混凝土強度折減依據。其中,柱之 表層溫度為501.1°C,其混凝土殘餘強度係數為0.48, 梁之表層溫度為477.4°C,其混凝土殘餘強度係數為 0.53,實驗之鋼筋最高溫度皆未超過500°C因此無須折 減。上述強度折減後之材料皆直接定義於各構件之纖 維斷面上以建立火害後數值模型。接頭之剪力強度則 依保守為原則選用柱之表層溫度以及混凝土殘餘強度 折減係數做為混凝土強度折減之依據,再依此值重新 以MCFT計算火害後接頭之剪力強度。

NF 試體分析結果與實驗結果比較

由於前段無火害數值模型之模擬結果於受地震力 各階段皆與實驗結果在結構物受振頻率與位移歷時之 變化上稍有落差,因此本段接續對構架屋接頭之強度 進行折減,探討接頭強度之變化對受振頻率與位移歷 時上之影響。

本段研究彙整,當接頭強度折減至殘餘30%時, 結構物振動頻率以及層間位移角始有明顯之折減,而 當接頭強度折減至殘餘20%時,構架屋則於0.2gTCU 時發生層間位移角超過3%以及接頭破壞使分析終止, 同於實驗之結果。圖28和圖29為接頭殘餘20%強度

模型之層間位移角歷時,表6與表7為最大層間位移 角以及結構物振動頻率與實驗值之誤差比較。相較原 始接頭強度之模擬結果,殘餘20%強度之接頭能於各 受振階段以高正確性捕捉位移歷時以及頻率變化,其 接頭強度應為更正確之值。表8與表9為原始強度接 頭與殘餘20%強度接頭之最大層間位移角以及結構物 振動頻率誤差比較。然而,如表7所示,實驗構架屋 之初始頻率為2.08 Hz,破壞時頻率為0.94 Hz,本段之 殘餘20%強度接頭構架屋模型之初始頻率為1.64 Hz, 破壞時頻率為1.20 Hz,而先前章節之原始強度接頭 構架屋模型之初始頻率為2.11 Hz,破壞時頻率為1.52 Hz,其破壞程度雖不及殘餘20%強度接頭之模型,但 其初始頻率有較高之正確性。因此,依本段所歸納之 分析結果,值得對構架屋試體做進一步之探討了解是 否有其他因素影響試體於受地震力後之破壞。

表 6 接頭強度殘餘 20% 之分析模型於未受火害時之最大層 間位移角

項目	實驗結果(%)	20% 殘餘強度 (%)	誤差 (%)
0.1 g El Centro	0.54	0.52	4
0.1 g TCU063NS	0.56	0.57	2
0.2 g El Centro	1.23	1.11	10
0.2 g El Centro	1.61	1.33	17
0.1 g TCU063NS	3.06	3.22	5

表 7 接頭強度殘餘 20% 之分析模型於未受火害時之自然振 動頻率

項目	實驗結果 (Hz)	20% 殘餘強度 (Hz)	誤差 (%)
受地震力前	2.08	1.64	129
0.1 g El Centro 後	1.65	1.51	8
0.1 g TCU063NS 後	1.52	1.48	3
0.2 g El Centro 後	1.31	1.27	3
0.2 g El Centro 後	1.13	1.22	8
0.2 g TCU063NS 後	0.94	1.20	28

表 8 有無接頭強度折減之最大層間位移角误差比較

項目	原始強度(%)	20% 殘餘強度 (%)
0.1 g El Centro	13	4
0.1 g TCU063NS	2	2
0.2 g El Centro	15	10
0.2 g El Centro	24	17
0.2 g TCU063NS	64	5

表9 有無接頭強度折減之自然振動頻率誤差比較

項目	原始強度(%)	20% 殘餘強度 (%)
受地震力前	1	129
0.1 g El Centro 後	5	8
0.1 g TCU063NS 後	14	3
0.2 g El Centro 後	19	3
0.2 g El Centro 後	35	8
0.2 g TCU063NS 後	62	28

F 試體分析結果與實驗結果比較

本章研究於先前章節因無火害數值模型之模擬結 果與實驗結果於結構物受振頻率與位移歷時之變化上 稍有落差,因此折減接頭強度以探討接頭強度之變化 對受振頻率與位移歷時上之影響,本段亦做相同之探 討,將火害後構架屋之接頭做折減後進行分析。

本段對火害後構架屋仍進行接頭強度折減至殘餘 70%以及50%之受地震力模擬,其受振位移歷時彙整 於圖30、圖31中,兩者皆於0.125gTCU地震力加 載初期或加載前發生接頭破壞。與前段原始接頭之結 果相比,可知接頭強度折減並未對分析結果有明顯影 響。本段研究可歸納,本節所定義之火害後原始接頭 強度構架屋於模擬試體之受振位移歷時與結構物振動 頻率即有高正確性,而對構架屋接頭進行強度折減分 析後亦可知其並未對受振位移歷時有明顯之影響,僅 對結構物振動頻率有些微之折減,以及接頭破壞之提 前,因此不需再對此進行探討。

鋼筋混凝土造火害後耐震能力評估流程

本研究根據前述振動台實驗與分析成果提出評估流 程,如圖 32 所示:

與火場最高溫度調查,以推估 RC 構件之最高溫度。

- 根據 RC 構件之最高溫度,參考國內外規範或研究 成果推估混凝土殘餘抗壓強度強度、鋼筋殘餘降伏 強度,並依據軸壓力比進行梁、柱斷面剛度(EI) 折減。
- 構件如因火害造成斷面破損嚴重者,宜進行適當修 復以保持斷面的完整性。
- 依據結構設計圖說及火害後材料強度,建立分析模型。
- 考量震害引致斷面開裂影響,修正梁、柱構件斷面 剛度(EI)及梁柱接頭剛性域。
- 6. 根據火害調查結果,以混凝土殘餘抗壓強度、鋼筋 殘餘降伏強度及修正後的斷面剛度(EI),利用塑鉸 輔助分析程式(如SERCB、TEASPA、TEASDA) 計算受火害影響區之梁、柱的塑性鉸。
- 根據結構物之平面或立面不規則程度,選擇非線性 靜力側推或非線性動力歷時分析,進行耐震能力詳 細評估,檢討性能點加速度(AP)與目標加速度 (AT)關係。
- 根據耐震能力詳細評估結果,如 AP 小於 AT 時,宜 建議耐震修復工法再重新檢討修復後效果。

結論

本研究探討鋼筋混凝土(RC)構架屋火害後之耐 震性能,利用109年已製作之RC構架屋,於內政部建 築研究所防火實驗中心戶外場地進行火害實驗,以模 擬RC構架屋在火場中所受到高溫影響,之後再運至鄰 近的國家地震中心台南實驗室,進行未受火害和受火 害RC構架屋之振動台實驗,藉以了解火害後RC構架 屋之耐震能力變化。此外,本研究同時進行受火害與 未受火害單層單跨RC造構架屋受地震之數值模擬,並

41

研擬完成鋼筋混凝土造火害後耐震能力評估流程。本 研究所得結論如下:

- RC 構架屋之振動台實驗結果顯示,相較於無火害 RC 構架屋,有火害 RC 構架屋受近斷層地震作用 時,側向勁度折減 64%、層間位移放大 2.6 倍、耐 震能力下降 27%。
- RC 構架屋之梁柱接頭剪力破壞可印證,土木 401-110 規範草案對於梁柱接頭剪力容量之係數由 3.2 修正為 2.1 為合理作法。假設梁柱接頭未發生剪力 破壞,依系統識別之參數進行側推分析模擬,火 害後構架屋之耐震能力降低 28%。
- 根據受火害 RC 構架屋實驗與分析比較結果,以等效 ISO 834 火害延時搭配 Eurocode2 之 500 度等溫線法,選擇截角斷面可獲得火害後柱斷面之等效混凝土抗壓強度折減 0.65 與慣性矩折減 0.25。
- 4. 本研究驗證使用有限元素分析軟體 OpenSees 建立 之 RC 構架屋數值模型於模擬火害前後試體受地震 力行為之正確性與可行性,並能用於日後模擬 RC 結構物受火害後之使用性與安全性之評估與預測。

參考文獻

- 1. 鍾興陽、洪崇展、黃世建、劉光晏,「火害後建築物之結構耐震 性能評估(1/3)—鋼筋混凝土造與鋼構造構件火害後耐震性能研 究」,內政部建築研究所專題研究計劃報告(2020)。
- 2. 內政部營建署,「混凝土結構設計規範」(2011)。
- 3. 蘇鴻奇、張尚文、王鵬智,「火載量評估技術之研究—以辦公空間 為例」,2010建築防火科技創新技術國際研討會,台北(2010)。
- 趙翊翔,「實尺寸鋼構實驗屋之複合鋼承樓版於自然火災下結構 行為研究」,國立成功大學碩士論文(2016)。
- 5. Ingberg, SH. 1928, "Tests of the severity of building fires". NFPA Quarterly, 22(1), 43-61, (1928).
- ISO 834, (1999). "Fire resistance tests-elements of building construction, Part 1, General requirements". International Standard ISO 834, Geneva.
- 7. 中國土木水利工程學會,「混凝土工程設計規範與解說(土木 401-110)」,科技圖書股份有限公司,台北(2021)。
- ASCE, Seismic Evaluation and Retrofit of Existing Buildings, ASCE/ SEI 41-13, American Society of Civil Engineers, Reston, VA (2014).
- European Committee, Eurocode 2: Design of concrete structures-Part 1-2:General rules-Structural fire design, EN 1992-1-2:2004:E, (1992).
- 10. 楊元森,「地震工程結構分析 OpenSees 軟體簡介」,檢自 <u>http://</u> www.ncree.org/Files/Publications/10000024.PDF, (2003)。
- 11. AIJ, (2009). "Guidebook for fire resistive performance of structural materials." 34-171.
- 12. Altoontash A. (2004), "Simulation and damage models for performance assessment of reinforced concrete beam-column joints." The Department of Civil and Environmental Engineering of Stanford University, Paper for Doctoral Degree.

