

DOI: 10.6653/MoCICHE.201810_45(5).0002

Morandl 德旗爆事件 分析跟尊

彭康瑜/林同校工程顧問股份有限公司 副總經理兼總工程師 林曜滄/台灣世曦工程顧問股份有限公司 總工程師 宋裕祺/國立臺北科技大學土木系 教授兼工程學院院長、國家地震工程研究中心 組長 洪曉慧/國家實驗研究院國家地震工程研究中心 研究員 蘇進國/國家實驗研究院國家地震工程研究中心 副研究員 吳明遠/國立臺北科技大學土木與防災研究所 碩士生

Morandi 大橋設計理念

(本節作者:彭康瑜)

莫蘭迪橋(義大利語:Ponte Morandi, 英語:Morandi Bridge)是義大利A10高速 公路Polcevera高架橋(義大利語:Viadotto Polcevera)的其中一段,位於利古里亞 (Liguria)首府熱那亞(Genova),建造於 1967年,由義大利土木工程師里卡爾多·莫蘭 迪(Riccardo Morandi)設計,義大利官方後 來正式命名為「莫蘭迪橋」[1,2]。

首先,談談大橋的設計理念,依據莫蘭 迪教授於 1969 年發表的文章「Some Types of Tied Bridges in Prestressed Concrete」(Riccardo Morandi, 1969),可以大致說明莫蘭迪教授 的基本想法,他在文章中提出兩種設置「Tied Member」的基本型態預力混凝土橋梁,分別 為(A) Bridges with the Lower Ties 與(B) Bridges with the Upper Ties,如圖 1 與圖 2 所示[3]。

從圖1與圖2的結構系統,可以瞭解莫 蘭迪教授擅長利用混凝土的抗壓原理與鋼腱 的預力特性,類似近代鋼筋混凝土分析計算 的壓拉桿模型(Strut-and-Tie-Modeling),將 結構系統設計的十分簡潔,且具有個人獨特 的風格;本次發生斷裂事故之莫蘭迪橋,即 屬於圖2的結構系統。

Morandi 橋崩塌事件分析報導

莫蘭迪教授設計如圖 2 的同類型橋梁,在世界上 最著名的是委內瑞拉 1962 年完工的拉斐爾·烏達內塔 將軍大橋(General Rafael Urdaneta Bridge),該大橋採 用預力鋼筋混凝土建成,全長 8,679 公尺,共有 134 個 橋墩,主橋段為多塔斜張橋,5 個主跨各長 235 公尺, 當年,是拉丁美洲跨度最長的斜張橋(圖 3)。

本文莫蘭迪橋,則是莫蘭迪教授設計的第二座 此類型預力混凝土斜張橋(1967年),其橋梁長總約 1,102公尺,P1~P8為邊橋單元,採V型橋墩設計, P9~P11為三塔斜張橋,採A型橋塔設計,橋塔基礎 設置四組H型鋼筋混凝土構架,與五室的預力箱型梁 剛接(Rigid Connection),橋塔則利用四組預力混凝土 斜材(PC Ties),斜拉支撐預力箱型梁,形成穩定獨立 的三角形橋塔單元,最大跨徑約 210 公尺, P12 則為橋 台,用以銜接附近的交流道系統(圖4至圖 6)。

圖 3 委內瑞拉的拉斐爾·烏達內塔將軍大橋 [4]

圖 6 莫蘭迪橋 A 型橋塔結構系統示意圖 [2]

其中,值得特別說明的是,A型塔柱於預力箱型梁 下方,設置有一對橫梁,但其並不承載預力箱型梁傳 遞的力量,如圖2的結構系統之說明。這與網路媒體 轉載的橋梁崩塌現況影片中,P9橋塔單元的H型鋼筋 混凝土構架與預力箱型梁,先行斷裂後,A型塔柱才接 續崩塌的現象,是相符合的。

莫蘭迪教授在成功發展了他獨特的橋梁結構系統 後,受到當時國際工程界的矚目;另外,他也獲邀設 計了利比亞的 Wadi el Kuf 大橋(1972年),與哥倫比 亞的 Alberto Pumarejo 大橋(1974年);其中,哥倫比 亞 Alberto Pumarejo 大橋,近年來由於橋梁腐蝕損傷嚴 重,且因橋梁負擔交通量與船舶航道的需求急遽增加, 目前正委由林同棪國際工程顧問公司負責設計,改建為 新的 Pumarejo 大橋,新線的斜張橋主跨 380 公尺,橋 寬約 38.1 公尺,預定於 2019 年完工,如圖 7。

圖 7 哥倫比亞施工中的新 Pumarejo 大橋

莫蘭迪教授發展的斜張橋結構系統,雖然有其優點與特色,但數量很少的預力斜材,缺少傳遞力量的替代路徑,也造成他受到其他工程師的批評。若以現代斜張橋的設計觀點,依據美國 PTI 協會設計規範(Recommendations for Stay Cable Design, Testing & Installation)的規定,斜張橋設計必須檢核任一組斜張鋼纜斷裂造成橋梁安全的衝擊影響,就可以清楚瞭解莫蘭迪教授的斜張橋結構系統,缺乏結構贅餘度

(Redundancy)與穩固性(Robustness)的缺點。

此外,莫蘭迪橋預力斜材內的斜張鋼纜,係以預 鑄鋼筋混凝土殼內灌混凝土包覆,造成日後營運階 段,斜張鋼纜的腐蝕損傷,檢測十分困難,間接造成 橋梁安全的重大威脅。

建造施工方法及後來的維修補強 (本節作者:彭康瑜)

莫蘭迪橋在設計當時,由於橋址已有多棟樓房建築、廠房、河道與營運中的鐵路軌道,所以,莫蘭迪教授所設計的施工方案,大量採用機械化的施工工藝,例如:橋塔單元預力混凝土箱型梁的場鑄節塊懸臂施工,施工中臨時懸臂鋼腱的配置,如圖8所示,

跨徑中央外懸簡支預鑄預力梁的機械化吊裝,A型塔柱 採高低塔吊的施工方案等,充分展現出義大利混凝土 橋梁的工藝水準,在當時世界上屬於領先的地位。

由於莫蘭迪橋鄰近海岸,受到鹽害腐蝕的威脅,一 直困擾著橋梁養護的人員,在大橋完工後幾年間,P11橋 塔單元的斜張鋼纜與塔頂鞍座,就因為腐蝕嚴重,進行 斜張鋼纜的抽換與塔頂鞍座的加固補強;接著幾年後, P10橋塔單元的塔頂鞍座,亦進行外加鋼製構件的加固 補強。其中,P11橋塔單元斜張鋼纜的抽換補強,採用 於預力斜材外增設鋼框構架,設置外置預力鋼腱取代原 有混凝土包覆的預力鋼纜,其力量轉換的機制與施工步 驟,以現今的施工風險評估標準,仍是屬高風險的施工 方案,也展現出當年義大利預力補強施工的高水準工藝。

2018 年 8 月 14 日大橋斷裂後,義大利基礎設施和 交通運輸部於 8 月 16 日組成事故調查委會,預定在 30 天內完成調查報告。依據 9 月 25 日公布的官方調查報 告 [11],莫蘭迪橋的斷裂崩塌,主因是預力梁的鋼筋與 鋼腱腐蝕嚴重所造成的構件斷裂,不是直接因為一根或 多根預力斜材的鋼纜腐蝕斷裂所引致橋梁崩塌,報告中 也多處指出,負責橋梁營運的特許公司,對歷年橋梁檢 測與結構損傷狀況,沒有盡到應有的維護補強義務。

圖 8 莫蘭迪橋場鑄節塊懸臂施工示意圖 [6]

圖 9 莫蘭迪橋施工相片 [5]

Morandi 橋崩塌事件分析報導

圖 12 莫蘭迪橋 P11 橋塔單元斜張鋼纜更換程序 [8,9]

橋梁崩塌模式拆解 (本節作者:林曜滄) 導致 Morandi 橋崩塌之原因探討

經蒐集及參考橋梁所處環境照片、技術資料、本 橋補強資料、當時橋梁設計施工技術水準、材料之發 展,及媒體報導等,綜合整理如下。

- 外在環境因素:臨近海邊,位處工業區,極嚴重腐 蝕環境;交通輛成長4倍、活載重增加;金屬護欄 改成RC 護欄,橋面附加載重增加;當時風雨交加風 雨動態載重;及例行性維修之施工荷重等。
- 材料老劣化因素:PC 開裂滲水鋼材腐蝕;PC 乾縮
 潛變;非低鬆弛鋼鉸線,預力鋼腱鬆弛;反覆振動
 與疲勞裂縫,達疲勞強度等。
- 結構系統因素:贅餘度極少的斜張橋;預力斜材錨 碇集中於一處;主梁不連續;具外懸鉸接構造;具
 懸吊段構造;部分構件維修困難;完工後結構性問 題持續進行維修。

圖 13 莫蘭迪橋 P10 橋塔單元塔頂鞍座加固補強 [10]

維修管理因素;檢測維修未落實;超過養護時間未
 維修;維修或改善預算不足;管養人力不足等。

Morandi 橋崩塌拆解

由於橋梁係瞬間完全崩塌,由此研判應為結構 critical member 破壞所導致,而斜張橋之 critical member 主要是鋼纜(stay cable)(拉力構件)、橋塔(壓力構 件)或主梁(撓剪構件),由 2018/9/25 官方公布調查主 因[11]是預力主梁的鋼筋與鋼腱腐蝕嚴重所造成的構件 斷裂,不是直接因為一根或多根預力斜材的鋼纜腐蝕斷 裂所引致橋梁崩塌。而主梁內部鋼筋與預力鋼鉸線斷裂 原因推估為腐蝕(靠海、工業區、混凝土保護層開裂滲 水)、交通量飽和超載、疲勞等因素。

莫蘭迪橋崩塌是一種連鎖式的崩塌,可由掉落的 橋面,推估崩塌情形。由空拍照片將原橋區分為懸吊 段、懸臂段(A~D、4區)及柱頭段,其中懸臂段 (B、C區)再細分為 B1&B2、C1&C2,如圖 14 所示,崩塌後之段落區分如圖 15 所示。蒐集相關現場照片整理分析如下:

- (1) A 區及 D 區主梁懸吊段脫離外懸鉸接伸縮縫處支承 座,直接掉落地面,如圖 15、圖 18 所示。
- (2) B 區懸臂段主梁 B1 扭轉後掉落並插入地面,如圖 16 所示,這可推估是其中一個預力斜材先損壞,主梁

扭轉掉落,它是唯一不在橋軸線上,重量轉移至另 一預力斜材,驅動了橋塔的扭轉。

(3) 東半部 C 區懸臂段主梁整個橋面掉下來,幾乎是沿橋軸線,另外是懸臂段折成二段,在鐵路上方有兩層橋面疊加,下層 C2 橋面被預力斜材拉向塔側然後掉落在軌道上,上層 C1 以橋柱支撐翻轉 180°後橋面翻落倒置壓在上面,如圖 17 所示。

圖 17 橋梁倒塌C區照片 [15]

圖 18 橋梁倒塌 D 區照片 [16]

崩塌事件之結構分析與探討

(本節作者:宋裕祺、洪曉慧、蘇進國、吳明遠)

莫蘭迪大橋,如圖 19 所示,為研析其結構破壞原 因及其崩塌順序,本節透過橋梁設計、施工及相關補強 資料之蒐集,結合現今橋梁分析數值模擬方法,拆解結 構內力轉換過程,冀能提供橋梁結構分析時之參考,亦 新對橋梁管養及相關主管機關決策過程能有所助益。

基本資料

曾被視為義大利建築工藝代表作之一的莫蘭迪 大橋,在相同時期相似的結構系統共計有:(1)位於 委內瑞拉境內跨越 Maracaibo 湖的烏達內塔將軍大 橋(General Rafael Urdaneta Bridge, 1962年竣工); (2)位於利比亞北大的瓦迪橋(Wadi el Kuf Bridge, 1971年竣工);(3)位於阿根廷雷西斯滕西亞跨越巴拉

圖 19 莫蘭迪大橋現地照片 (照片來源: https://zh.wikipedia.org/wiki/ 莫蘭迪橋)

那河(Paraná River)的查科 - 科連特斯大橋(Chaco-Corrientes Bridge, 1973年竣工);(4)位於哥倫比亞境 內跨越馬格達萊納河(Magdalena River)的普雷馬霍橋

(Pumarejo Bridge, 1974年竣工)。有鑑於莫蘭迪大橋 的倒塌意外,針對此類特殊橋型之結構行為,確有詳 細研究及探討的必要性。

根據莫蘭迪於 1968年發表之義大利報告指出 [17],莫蘭迪大橋原跨徑配置為 43 + 5@73.2 + 75.313 + 142.655 + 207.884 + 202.50 + 65.10 = 1102.452 公尺,並 於主橋最大跨徑處配置三個主塔,其編號分別為 Pylon 9~Pylon 11,而當時為克服主橋段最大跨距超過 200 公 尺的鋼筋混凝土上部結構配置,規劃採用如圖 20 所示 之主塔懸臂單元銜接簡支單元(36 公尺長)等系統進 行結構設計。其後於 1997 年時,C. Gentile 等人 [18] 針 對莫蘭迪大橋 Pylon 11 進行預力斜材置換補強後,曾 發表預力斜材元件動力量測與分析等研究成果。其中, 對於此橋結構分析模型之建立,主要係以單一橋塔懸臂 單元為主,並經二維及三維等不同數值模型研究,探討 現地量測所得成果,並藉此確認預力斜材的索力狀態。 因莫蘭迪大橋原始設計圖說及結構計算書等資料索取不 易,為有效掌握已倒塌 Pylon 9 單元的結構內力傳遞及 崩塌順序,本文參考相關文獻及本橋結構特性,擬以單 一懸臂振動單元為分析對象,建立三維結構數值模型, 並透過研讀既有橋梁設計資料及施工過程等網路資訊, 逐步進行橋梁結構崩塌的行為研究。

橋梁設計及施工過程資料蒐集與探討

莫蘭迪曾於報告 [17] 中,明確保存如圖 21 所示之 懸臂單元平立面圖。由其原始設計概念中,可將懸臂 單元另行拆成四個重要組成子結構,包含如圖 22 所示 的 A 型橋塔、V 型橋墩、外置預力斜材及三跨連續主 梁系統:

圖 22 莫蘭迪大橋結構拆解示意圖(本研究繪製)

- A型橋塔自塔頂至橋面高度約45.37公尺,橋面至塔 底為44.83公尺,橋塔總長度為90.2公尺。
- 2. V型橋墩以固接方式連接主梁及基礎板,基礎板下方 設置樁長約 40 公尺長之基樁,單一橋塔下方基樁樁 數約為 9×7=63 根。
- 3. 外置預力斜材主要用於連接橋塔及主梁,其斷面由兩組 98 cm×61 cm 方形元件(如圖 23 Sect. A-A)漸變接合成 98 cm×122 cm 混凝土斷面(如圖 23 Sect. B-B)。其中,98 cm×61 cm 混凝土方形斷面內,設置由 4 根 12T 與 8 根 16T 鋼絞線所組成的 A-cable,以及 14 根 4T 鋼絞線所組成的 B-cable。參考施工過程照片可知(如圖 24),當主梁懸臂段全部完成後,施工步驟先以 A-cable 懸吊主梁,其後安裝預鑄混凝土斷面及 B-cable,並控制混凝土斷面承受約 10 N/mm²之壓應力,期能抵抗風壓、活載重疲勞及環境腐蝕等外力因素,確保預力斜材的耐久性。
- 4. 三跨連續主梁系統方面,上部結構設計規劃採用五 箱室之箱型梁,其橋面全寬約18公尺、梁深約4.5 公尺,因橋下淨高超過40公尺、場撐施工不易,故 採用懸臂施工方式進行施築。惟主梁施工過程橋塔 尚未完成,無法及時提供外加垂吊支撐分力,因此 當時所採用的懸臂工法及內置預力配置較現今常見

圖 23 預力斜材配置圖(本研究重繪,單位:公分)

之箱梁頂板對拉方式不同,並係於橋面設置臨時吊 梁系統(temporary tie beams,如圖 25),用以克服 頂板拉力及重力引致的變位量。待整體懸臂段完成 後,方由外置預力斜材提供吊點,並搭配 X 型橋墩 支撐系統,形成三跨連續結構,並配置如圖 26 所示 之箱梁內置預力系統配置。

圖 24 預力斜材施工過程示意圖 (圖片來源: http://www.retrofutur.org/retrofutur)

圖 25 主梁懸臂施工示意圖 (圖片來源: https://www.youtube.com/watch?v=GuFaS1_e9Sw&t=23s)

圖 26 原配置內置預力系統示意圖 [17]

結構分析數值模型概述

針對前節所述原始設計條件及目前蒐集既得資 訊,本節假設基本分析條件,並據以建立結構數值分 析模型,另參考橋面支撐系統及現況受力情況,配合 參考文獻 [18] 所述 Pylon 11 之預力斜材修補置換索 力,完成整體結構分析資訊。相關說明如下:

基本假設條件說明:

- (1)數值模型以單一橋塔所組成之懸臂振動單元進行分析。
- (2) 假設材料強度及分析條件:
 - (a) 橋塔與主梁混凝土強度: 350 kgf/cm²
 - (b) 橋墩與基礎混凝土強度: 280 kgf/cm²

- (c) 7 mm 高拉力鋼線極限強度: 16,500 kgf/cm²
- (d)分析過程未考量懸臂施工過程(原設計以9@5.5 m之節塊施工進度進行澆築)及預力斜材二次施 作之影響。

結構分析數值模型元件

本文所建立之 Pylon 9 懸臂振動單元結構分析模型 如圖 27 所示,包含前述 A 型橋塔、V 型橋墩、外置預 力斜材及三跨連續主梁系統等各式結構元件,惟基樁 及地下土壤鑽探資訊並無參考依據,因此假設邊界條 件係於基礎底部採用固接方式設定。

橋面支撐系統及受力

對於三跨連續主梁系統所承受外力部分,假設懸 臂振動單元於左右兩端各自承受 36 公尺長的簡支單元 一半自重,並假設主梁承受 5 公分厚的 AC 鋪面重量, 以及中央分隔島、兩側橋護欄和管線附掛等附加載重 (Superimposed loading),外力施加方式如圖 28 所示。

預力斜材索力設定

預力斜材索力主要參考 C. Gentile 等人 [18] 執行 Pylon 11 預力斜材置換時的外加索力值,而其補強階 段導入的主要預力約為 17,040 kN。另檢核圖 23 所示 Sect. B-B 的高拉力鋼線總數,共約有(4×12T+8×

圖 27 Pylon 9 結構分析數值模型元件示意圖 (本研究繪製)

 $16T + 14 \times 4T$) × 2 = 464T 鋼線,假設鋼線斷面係採用 單根直徑 7 mm ϕ (A_s = 0.3848 cm²)之型式,則各鋼線 承受應力($\sigma = P/A_s$)約為 9,728.5 kgf/cm²。

圖 29 橋塔 Pylon 11 預力斜材置換示意圖(照片來源: Google map)

情境一:預力斜材先斷損之破壞程序模擬及分析

本研究參考網路資訊及新聞 報導橋梁崩塌照片,研擬破壞程 序分析步驟如圖 30 所示。分析 過程先評估橋梁初始結構受力狀 態,續假設單側單根預力斜材元 件斷裂失效,再評估單側兩根預 力斜材損壞時的結構內力變化, 最後將三跨連續主梁變更為兩 跨連續系統,並依序觀察所提分 析程序中,整體結構力量分布情 形,據此探討橋梁倒塌順序。

破壞過程整體結構軸力分布

結構分析過程除 估算幾何關係、各元 件勁度、自重及附加 載重之外,另一重要 工作係參考相關文 獻導入預力斜材約 17,040 kN 之預力。 於單一預力作用下, 經過力量分配後,可 得混凝土內置纜索元 件內力約為-1,673 tf,若進一步考量結 構自重及附加載重 後,其總受力約418 tf,此與補強設計案 例要求斷面維持10

圖 30 橋梁破壞程序模擬示意圖 (本研究繪製)

圖 31 整體結構軸力分布示意圖 (本研究繪製,單位:tf)

N/mm²有所不同,主要差異來自於 Pylon 9 與 Pylon 11 下部結構及懸臂單元受力不同之影響。

觀察圖 31 所示整體結構軸力變化圖中,橋梁於原 始服務階段(Step 1),A型橋塔四根塔柱均約承受 II 1,571 tf之軸壓力,若考量左邊單側單根預力斜材破壞 時(Step 2),橋塔產生扭轉現象,銜接預力斜材斷裂 處之塔柱由承壓轉受拉(拉力值約1,567 tf),其他三 根塔柱則維持受壓,惟壓力值亦伴隨產生不同變化。 再者,若進一步模擬單側兩根預力斜材破壞時(Step 3),連接預力斜材斷裂處之兩根A型塔柱產生3,980 tf 的受拉狀態,其後懸臂單元左側上部結構可能因為失 去斜索懸吊而發生落橋情形(Step 4),原三跨連續主 梁轉變為兩跨連續系統,將令懸臂單元產生左右不平 衡狀態,而其不平衡彎矩對連接預力斜材斷裂處之兩 根A型塔柱而言,更可能產生4,978 tf 的拉力值。

破壞過程整體結構彎矩分布

觀察圖 32 所示整 體結構彎矩變化圖中, 橋梁於原始服務階段 (Step 1)係屬於三跨連 續系統,最大正彎矩為 13,528 tf-m、最大負彎 矩為-20,411 tf-m,若 考量左邊單側單根預力 斜材破壞時(Step 2), 右側主梁之最大正彎矩 降為 11,059 tf-m,但左 側主梁之最大負彎矩提 高至-31,092 tf-m,約 為原設計值的 1.5 倍。 再者,當單側兩根預

圖 32 整體結構彎矩分布示意圖 (本研究繪製,單位:tf-m)

力斜材破壞時(Step 3),上部結構幾乎全面承受負彎 矩,右側主梁之最大負彎矩提高至 - 80,375 tf-m、左側 主梁之最大負彎矩提高至 - 135,885 tf-m,兩者約為原 設計值之4~6.75倍。最後,當左側橋面產生破壞後, 右側主梁之最大負彎矩為-52,231 tf-m,約為原設計值 之2.6倍。

破壞過程橋塔剪力分布

觀察圖33所示塔 柱結構剪力變化圖中, 橋梁於原始服務階段 (Step 1), 塔柱各結 構原件最大剪力值僅為 111.8 tf, 若考量左邊單 側單根預力斜材破壞時 (Step 2), A 型橋塔塔 頂及塔中橫梁剪力分別 增至-302 tf 和 254 tf, V型墩柱則最大增至 236 tf。當單側兩根預力 斜材破壞時 (Step 3), V型墩柱右側下部結構 剪力倍增加至 888 tf,而 V型墩柱底部連梁剪力

圖 33 塔柱結構剪力分布示意圖 (本研究繪製,單位:tf)

增加至 -1,317 tf,此狀態應為下部結構發生剪力破壞 最可能的情形。最後,當左側橋面產生破壞後,V型墩 柱底部連接基礎板之剪力微幅增加至 368 tf。

整體結構破壞順序推估

綜合分析國際報 導及本文結構模擬分 析結果,初步推估整 體結構破壞順序如圖 34所示,相關說明簡 述如下:

Step 1:

懸臂單元之單側單根 預力斜材可能因環境 腐蝕或老劣化等因素 產生裂損破壞現象。

Step 2:

單根預力斜材失效 後,橋面與橋塔均產 生扭轉現象,橋塔兩

圖 34 整體結構破壞順序推估示意圖 (本研究繪製)

側上部結構之自重及扭力均由另一根鋼纜獨自傳遞至無 法完全負荷。

Step 3:

單側兩根預力斜材破壞後,上部結構瞬間失去重要支 撐點,導致主梁無法承受急速倍增之負彎矩而崩裂。

Step 4:

主梁由三跨連續變為兩跨連續結構,A型橋塔因左右兩 側不平衡受力現象,引致塔柱各元件由全受壓變為單側 受拉,倍增之拉力超過原始設計範圍時,即造成A型 橋塔沿行車向倒塌。

Step 5:

A 型橋塔倒塌後,另一側僅存之預力斜材亦隨即掉落, 並引致其懸吊之上部結構瞬間失去支撐點,進而持續發 生坍塌現象。

Step 6:

懸臂單元所有上部結構、A型橋塔及左右兩側簡支單元 全數崩塌掉落,現地僅存 V型橋墩底部結構。

情境二:主梁先斷損之模擬及分析

根據義大利官方公布調查結果顯示,懸臂單元箱 型主梁及簡支單元預力1型梁於事發之前,業已檢測 發現鋼筋腐蝕及鋼纜鏽蝕等現象,因而可能由上部結 構主梁先行發生斷裂,再直接引致全橋倒塌情形。爰 此,為模擬主梁先行斷裂之狀況,本節將以單側簡支 單元的預力I型梁先發生毀損,亦或懸臂單元箱型主梁 先發生斷裂等二者,分別進行分析並說明如後:

Case 1:單側簡支單元預力 I 型梁先發生毀損

如圖 35 所示,為釐清單側簡支單元發生損壞後, 對於懸臂單元左右兩側不平衡受力之情形,先假設僅 單側承受簡支單元重量,觀察其後續內力變化。由圖 36 之分析結果顯示,A型橋塔右側軸力由圖 31 所示約 -1,571 tf之壓力,增加至 -2,792 tf,主梁最大正、負 彎矩由圖 32 原始 13,528 tf-m 及 -20,411 tf-m 增加至 16,518 tf-m 及 -26,102 tf-m,而塔柱剪力變化並未非常 明顯。

Case 2:由單側懸臂單元箱型梁先發生斷裂

如圖 37 所示,為分析過程單側箱梁斷面發生損 壞,故假設其箱梁斷面勁度瞬間衰減至微小值,用以觀 察橋梁結構內力分布。根據圖 38 之分析結果顯示,因箱 梁勁度瞬間衰減,左側預力斜材軸力隨即發生異常增減 量,而A型橋塔軸力亦由圖 31 所示純受壓(約-1,571 tf)轉變為一拉一壓(約5,583 tf 及-8,829 tf)狀態,過

圖 35 單側簡支單元預力 I 型梁先發生斷裂示意圖(本研究繪製)

圖 36 單側簡支單元斷裂後之內力分配圖 (本研究繪製)

圖 37 單側懸臂單元箱型梁先發生斷裂示意圖 (本研究繪製)

圖 38 單側懸臂單元斷裂之內力分配圖(本研究繪製)

大之拉力可能引致橋塔接續發生破壞;在整體結構彎矩 分布部分,橋塔頂部各銜接桿件均發生異常放大現象, 而右側主梁最大負彎矩由圖 32 原始 – 20,411 tf-m 倍增至 – 38,304 tf-m,亦可能因此引起預力斜材、橋塔及主梁發 生連續性破壞狀況;在塔柱結構剪力分布部分,A 型橋 塔塔柱及連梁剪力亦異常倍增至正負 1,600 tf 及 7,500 tf 之大小。

結論與展望

橋梁全生命週期成本主要包含規劃、設計、發包 和施工等初期成本,以及維護和管理的管養成本,與 拆除和重建的改建成本等,如何在最佳化的生命週期 裡,有效延長橋梁壽命,關鍵技術在於常時的維護與 管理。其中,有效的橋梁檢測、監測、維修與補強工 作,更是維護管理的執行重點。 以莫蘭迪大橋為例,其橋齡已臻 50 餘載,橋梁生 命週期管養階段已發現 Pylon 10 與 Pylon 11 的部分損 傷,並針對 Pylon 10 的 A 型橋塔頂部執行預力斜材鞍 座補強,另針相對損壞較嚴重的 Pylon 11,業已進行預 力斜材置換補強工作,惟根據 Pylon 9 當時檢測報告指 出,其表面並無明顯損傷,故尚未執行任何維修補強工 作,今卻發生意料外的橋梁倒塌事故,瞬間增加可觀的 社會成本,實應列為產、官、學、研等各界警惕。

經由義大利官方調查結果及各種破壞程序之假 設,本文已針對預力斜材或主梁等二者斷裂情形,進 行破壞程序模擬分析。根據結果顯示,莫蘭迪大橋橋 址位於波希維拉河谷並緊鄰海岸線,長期接觸海風而 俱氯離子侵襲之虞,造成主梁內置預力與鋼筋鏽蝕, 而斜張鋼纜及其外置錨碇設施亦可能發生腐蝕現象。 惟主梁可能因自身內置預力過度失效而直接斷裂,亦 可能由預力斜材內力逐漸降低過程,引發主梁負彎矩 超過彎矩容量而斷裂,更可能由斜張鋼纜直接斷裂而 引致落橋。爰此,本文遂行各類假設分析,相關模擬 過程及評估結果冀能提供參考之用。

鑑於此次國際公共工程安全事件,以國內橋齡逐漸 老年化的事實為例,建議應積極發展橋梁健康安全守護 工作,並以結構分析為基礎,著手執行「醫檢分離」、 「完整履歷」、「提早預防」、「長期照護」等橋梁養護工 作,藉由全自動化表單、檢測與評估分工、全方位檢測 資訊、完整記錄履歷、自動化災防評估與預警提示、自 動化監測系統、橋梁健康長期照護等研究方向,逐一邁 向橋梁全生命週期科技化管理目標,亦冀能達到支援政 府決策、守護橋梁健康、降低受災風險的最大效益。

參考文獻

- 1. https://en.wikipedia.org/wiki/Ponte_Morandi
- 2. https://it.wikipedia.org/wiki/Viadotto_Polcevera
- Riccardo Morandi, "Some Types of Tied Bridges in Pre-stressed Concrete," ACI Special Publication, Volume 23, pp. 447-466 (1969)
- 4. https://en.wikipedia.org/wiki/General_Rafael_Urdaneta_Bridge
- Riccardo Morandi, "Polcevera Viaduct in Genova-Italy," Construction Reports Vol. 21, No. 200, May 1968
- SIXXI edited by Tullia iori and Sergio PoreTTi, STRUCTURAL IN ITALY HISTORY OF ENGINEERING 4, 2011
- C. Gentile and F. Martinez Y Cabrera, "Dynamic Investigation of a Repaired Cable-Stayed Bridge," Earthquake Engineering and Structural Dynamics, Vol. 26, pp. 41-59 (1997)
- 8. F. Martinez Y Cabrera, G. Camomilla, M. Donferri Mitelli and F.

Pisani, "Rehabilitation of the Stays of the Polcevera Viaduct," 1994 International Symposium of Cable-Stayed Bridges, Shanghai, China, pp. 640-665 (1994)

- Gabriele Camomilla, Francesco Pisani, F. Martinez y Cabrera and Agostino Marioni, "Repair of the stay cables of the Polcevera Viaduct in Genova, Italy," IABSE Reports No. 73, Vol. 1, pp. 535-540, Extending the Lifespan of Structures, IABSE Symposium, San Francisco, August 1995
- http://www.retrofutur.org/retrofutur/app/main?DOCID=1000115890& blobIndex=image_med1
- 11. "The Report on the Collapse of the Genoa Bridge (14 September 2018)," The Inspection Commission, Ministry of Infrastructures and Transport, Italy http://www.mit.gov.it/comunicazione/news/ponte-crollo-pontemorandi-commissione-ispettiva-genova/ponte-morandi-online-la
- 12. Google Map 截圖
- 13. https://dmpublisher.s3.us-west-2.amazonaws.com/2018/ August/16/7/2b6271f4-cff2-4247-b6e9c2e2271fc772-original
- 14. https://www.google.com.tw/search?q=morandi+bridge&tbm=isch&tbs =rimg:CRtwAixnzQAbIjifm4iKpWkZCtwfz11YkxMnMj2FNdDykv RD6 FCK9G9EW54sDt8rzE8kvUEsF_199eIs2Kz_1Ls3oQ4CoSCZbi IqlaRkKEfii6GHdAaLxKhIJ3B_1PXViTEycR2aWXTacN0l4qEgkyP YU10PKS9BG-6yg2LbwALioSCUPoUIr0b0RbERF8CGbjFuVeKhI-JniwO3yvMTyQR GLT4dyMohC0qEgm9QSwX_1314ixE2RDeTy4kj CoSCTYrP8uzehDgER1ylyu6Oj2V&tbo=u&sa=X&ved=2ahUKE wi N2q2q9JHeAhWbdd4KHQ1YC3kQ9C96BAgBEBs&biw=1920&bi h=933&dpr=1#imgrc=ZUn_U_XZVIE4kM:&spf=1539931616684(EP A photo)
- http://www.meteoweb.eu/2018/08/crollo-ponte-morandigenovaautostrade-italia/1137544/
- https://www.neweurope.eu/article/italians-wonder-whom-to-blameformorandi-bridge-collapse/
- Riccardo Morandi, "viaducto sobre el Poleevera en Genova-Itatia", Informes de la Construcción Vol. 21, nº 200 Mayo de 1968.
- C. Gentile and F. Martinez Y Cabrera, "Dynamic Investigation of A Repaired Cable-stayed Bridge", Earthquake Engineering and Structural Dynamics, Vol. 26, pp. 41-59, 1997.
- 網路資料: https://www.newcivilengineer.com/latest/revealed-collapseditaly-bridge-construction-photos-and-designs/10034288.article? blocktitle=News-Feed&contentID=13612
- 20. 網路資料: http://www.retrofutur.org/retrofutur/app/main?DOCID= 10001160 30
- 21. 網路資料:https://www.youtube.com/watch?v=GuFaS1_e9Sw&t=23s
- Camomilla, Martinez y Cabrera, Pisani and Marioni, "Repair of the Stay Cables of the Polcevera Viaduct in Genova, Italy", IABSE Symposium 1995.
- Pier Giorgio Malerba, "Inspecting and repairing old bridges: experiences and lessons", Structure and Infrastructure Engineering, Vol. 10, No. 4, pp. 443-470.
- 24. Walter Podolny, "Concrete Cable-stayed Bridges", Federal Highway Administration.
- 25. Riccardo Morandi, "Some types of Tied Bridges in Prestressed Concrete", First International Symposium, ACI Publication SP-23.
- 26. Riccardo Morandi, "The long-term behavior of viaducts subjected to heavy traffic and situated in an aggressive environment : the viaduct on the Polcevera in Genoa", IABSE reports, 032 (1979).