

林彦廷/國立臺灣大學土木工程研究所測量與空間資訊組 博士候選人 張 喆/國立臺灣大學土木工程研究所測量與空間資訊組 博士候選人 陳思恩/國立臺灣大學土木工程研究所測量與空間資訊組 碩士生 李豐佐/國立臺灣大學水工試驗所 助理研究員 賴進松/國立臺灣大學水工試驗所研究員暨生物環境系統工程學系 兼任教授 韓仁毓/國立臺灣大學土木工程研究所空間資訊組 教授

近年來極端氣候影響,驅使河川洪水流量及土砂運移量加遽現象,致使河道上人工構造物(堤防、取水 工、橋梁...等)之基腳保護工容易發生沖刷破損、傾倒、位移甚至消失等情況。眾多的基腳保護工不論清 查或管理,若採用人工作業調查,需花費相當人力與時間成本。因此本研究希望透過快速現地調查,以無人 飛行載具(Unmanned Aerial Vehicle, UAV)進行影像資訊蒐集,利用河岸自然環境與人工構造物於光譜影像 中明顯的差異性,採用影像形態學與 SVM (Support Vector Machine)二元影像等分類方法,進行半自動化 圈選與辨識基腳保護工之應用。分析過程採用紋理分析方法,尋找影像中具辨識力紋理,再藉由二元影像分 類得到基腳保護工區域與非基腳保護工區域。另外,分類成果亦包括雜訊與分類錯誤,後續納入影像形態學 中封閉運算法,尋找最大外包絡多邊形。將最大外包絡區域視為基腳保護工區域,圈選與計算面積。藉由本 研究建立程序,以半自動化圈選基腳保護工所在位置,對於基腳保護工區域調查作業,提供便捷分析效益, 同時兼具成本考量與調查之精確度,掌握資訊利於後續養護工程進行。

背景說明

臺灣河川坡陡流急,地質多屬脆弱鬆軟,每遇颱 風暴雨洪水時,河道上人工構造物(堤防、取水工、 橋梁 … 等)之基腳保護工常遭水流沖刷破損、傾倒、 位移甚至消失等情況,甚而破堤致災。近年來氣候變 遷導致極端水文事件頻傳,對於人民生命安全產生威 脅,尤其河岸及海岸地區居民,深受水位急遽變化影 響。因此,基腳保護工的設置,攸關沿岸地區人民的生 命與財產安全保護之重要決策。基腳保護工為人工構 造物,以其幾何形狀、排列方式及抗沖蝕材料等方式 減少水流、泥砂及漂浮物之衝擊,達到保護堤防、固 床工、取水工等人工構造物之基腳。根據水利署河川 復建工程工法之分類,基腳保護工包含石籠護坦工、 混凝土塊、格框護坦工等數種工法,而本研究以混凝 土塊為主要研究對象。混凝土塊基腳保護工種類繁 多,個體重量一般可分為5噸、10噸與15噸等3種, 其重量選用原則與河道設計流速或河道坡度有關,常 見個體尺寸約為1.5m×1.5m到2.5m×2.5m。混凝土 塊型式又可分為混凝土塊護坦工及丁壩工其中,丁壩 工主要為保護堤防基腳使用,丁壩工種類相當繁多, 諸如排列方式、結構、壩高、間距等,各因河道條件 不同而有差異;目前臺灣對於丁壩工法之設計準則主 要參考水利工程技術規範及水土保持技術規範,舉凡 丁壩之種類、方向、間距、壩長及適用範圍等,皆訂 定有相關設計準則供參^[1]。其材料為混凝土結構,常見 的混凝土塊丁壩工多屬於短丁壩型,單座丁壩工由橫 向 8~12 排、縱向 6~8 排之混凝土塊體所組成基腳保 護工,其平面布置係沿著堤防基腳前每隔一定距離設 置數座丁壩工,藉以形成丁壩群,達到微幅挑流及保 護堤防不受水流正面衝擊之效果(如圖 1 所示)。

(a) 名竹大橋上游丁壩群

(b)名竹大橋丁壩工上視圖 圖1 混凝土丁壩工

任何形式的護坦工及丁壩工,會因長時間安置在 河岸或海岸,受到大水沖蝕,造成結構上破壞或遺 失,防護功能逐漸或迅速下降,相對增加沿岸居民生 命財產之風險,顯示基腳保護工養護及維修工程之重 要性,然而現行基腳保護工養護及維修工程,採人工 調查方式,不僅成本耗費高且調查時間長,加上基腳 保護工布設區域廣泛,尤其不規則擺設區域更屬不易 靠近,使得探勘成果難以符合效益和需求,如何有效 進行基腳保護工維護及整治正面臨技術上挑戰。

隨著航空攝影測量技術發展成熟,透過高空定位 拍攝,不僅顯示地面影像資訊,亦提供拍攝區域之三 維空間資訊,若將航測技術應用於基腳保護工調查, 亦可大幅降低人工調查時間與成本,成果透過影像處 理分析技術,較傳統人工調查獲得更精確之調查資 料,達成全面性快速整治調查需求;然而,航測拍攝單 張像幅範圍廣大,基腳保護工塊區域僅涵蓋局部小範 圍,加上飛行機動性低,不易針對基腳保護工進行資 料調查蒐集。近年來無人飛行載具(UAV,Unmanned Aerial Vehicle)發展,不僅載具成本低廉且取得容易, 可針對待測物進行多次性機動拍攝,拍攝影像能以高 解析數值呈現。

UAV 發展及應用範疇

21世紀之後,國際社會開始致力於UAV發展,無 人飛行載具技術日新月異,從單一的軍事應用擴展到民 生領域,例如:建築物和結構物之監測及檢測、陸海空 三種環境監控、以及協助即時救災的資料蒐集等,所觸 及範圍不勝枚舉。由此可知,無人飛行載具之應用已深 入生活,成為輔助各項艱困任務的得力幫手。

近十多年以來,國內發展 UAV 產業的風氣鼎盛, 從監測與檢測到防災與救災等項目都是相關人士努力 的目標,盼能經由無人機協助,使任務執行過程相對 簡易並且更加迅速。UAV 定期於海岸線空拍再結合影 像校正作業,有助於追蹤監測沙灘之消長,且可詳細 記錄海岸的變化過程、濱線變化量測以及比較不同時 期濱線之變化,透過歷史航空照片及現有之海岸與海 底地形資料蒐集,可進行歷史濱線變化的比對,監測 同時可達到檢測目的^{[2]。}此外,於公路之防災與救災運 用 UAV 協助,透過空拍之高解析度照片,有效觀察公 路工程工址現況及評估外在環境影響風險,達到災前 調查或災後重建規劃,減輕防救災之時間壓力^{[3]。}

UAV 影像可針對某一地區,進行多次性拍攝蒐集 資料,因此拍攝影像數量相當可觀,若採用人工辨識 方式,需花費較高人力成本,且辨識效率不彰。若能 採用自動化或半自動化人工輔助辨識方式,能大幅度 減少人工作業增進效率。現有影像自動化辨識與半自 動化辨識研究中,藉由 SPOT 資料結合影像自動分類、 綠度與亮度植生指數,初步研判台灣中、北部的崩塌 地區;再疊合 3D 透視影像與地形圖資訊,輔助螢幕判 釋及數化向量資料,完成崩塌地辨識及範圍修正[4];另 外,應用於自動車牌辨識系統,分析包括車牌字元萃 取與辨識等核心計算,而此項技術已應用在高速高路 自動收費及停車場收費[5];再者,以影像為基礎進行交 通標誌標線自動化辨識與幾何重構,複合式門檻建立 適應戶外環境之後選物件偵測,達到交通標誌與標線 辨識,協助公路養護作業(6);其他研究針對於地下水區 與濁水溪沖積扇相關地下水數值模擬,以影像辨識技 術推估濁水溪不同時期之水面寬度,求得河道面積, 提供地下水數值模式中河川模組(River Package, RIV Package)之關鍵參數設定^[7]。

前期相關研究顯示,自動化影像辨識已相當多 元,從坡地災害、河道與地下水偵測與車牌或道路標 示等皆已採用此技術,若將自動化影像辨識技術,應 用於基腳保護工變遷分析,將大幅提升自動化調查技 術。由於基腳保護工塊色彩灰度值與河岸土砂相近, 故將依其固定幾何形狀大小及影像展現紋理,作為自 動化辨識之依據。

本研究將透過UAV 進行基腳保護工影像資料蒐 集,利用紋理分析與影像處理技術建立系列流程,採 取半自動化圈選基腳保護工區域,並獲得該區基本資 訊,利於後續基腳保護工變遷監測與養護作業。

研究方法

現行基腳保護工養護及調查方法分為兩種,主要 藉由人工至現場調查基腳保護工狀況,或藉由影像進 行人工辨識基腳保護工狀況,以上兩種方式皆需高人 力及時間成本。本研究針對自動化辨識需求,提出紋 理分析、影像分類與影像形態學等方法搜尋基腳保護 工區域,達到基腳保護工變遷分析。研究流程如圖 2 所示,共分為三大部分,包括影像正射化、紋理影像 分類分析及二元影像形態學處理等,經套疊正射影 像,圈選並辨識正確基腳保護工區域範圍。

圖 2 半自動化基腳保護工區域圈選流程圖

研究分析藉由前後重疊影像匹配,進行空中三角 測量平差,建立影像與地面控制點相對關係,獲取物 空間坐標,進而產製密點雲與正射化影像。基腳保護 工為固定形狀之人工構造物,於影像中呈現固定紋理 特色,其特性可穩定提供灰階共生矩陣(Gray Level Co-occurrence Matrix, GLCM)計算紋理影像,透過 不同紋理影像統計,選擇明顯基腳保護工(丁壩)區 域,進行 SVM 二元影像分類。影像分類成果中,除了 基腳保護工辨識區域,可能涵蓋許多雜訊區域,因此 計算各區域分類面積作為候選區域,並將候選區域面 積最大者作為目標區域。影像型態學處理中,以搜尋 最大外包絡多邊形為目的,並比較各塊面積大小,經 目標區域確認後,將該區域邊界套疊於正射影像上, 並框示目標範圍。

影像正射化

UAV 影像正射化屬於資料前處理部分,藉由 重疊影像與影像匹配技術,獲得影像與影像之間相 對關係。而後加入控制點坐標,進行空中三角測量 (Aerotriangulation)。空中三角測量係指攝影測量過 程中,利用 UAV 影像與物空間目標之間的空間幾何 關係,根據已知地面控制點及影像間對應連結點(tie point),以共線式的原理進行光束法空中三角測量平差 計算,同時解算航拍影像於物空間的成像位置、姿態 (即外方位參數) 及連結點之地面坐標。若將像機參 數(內方位參數) 視為未知數,並於空三平差過程中 一併解出,稱為自率光束法空三平差。攝影測量基本 原理為共線條件式^[8],以透視投影中心、像點與物點三 者位於同一直線上,表示攝影過程中光線沿直線方向 前進(式(1))。

$$\begin{aligned} x_a - x_0 &= -f\left[\frac{m_{11}(X_A - X_L) + m_{12}(Y_A - Y_L) + m_{13}(Z_A - Z_L)}{m_{31}(X_P - X_L) + m_{32}(Y_P - Y_L) + m_{33}(Z_P - Z_L)}\right] \\ y_a - y_0 &= -f\left[\frac{m_{21}(X_A - X_L) + m_{22}(Y_A - Y_L) + m_{23}(Z_A - Z_L)}{m_{31}(X_P - X_L) + m_{32}(Y_P - Y_L) + m_{33}(Z_P - Z_L)}\right] \end{aligned}$$
(1)

其中 x_a、y_a:點位影像坐標,x₀、y₀:像主點位影像坐 標,X_A、Y_A、Z_A、X_L、Y_L、Z_L為對應物點之物空間坐標 與透視中心物空間坐標,f為焦距。係數 m 為三方向方 位角所組成之旋轉矩陣,分別對物空間 X、Y、Z 軸旋 轉。

藉由共線式描述物像空間關係,以光束法平差解 算獲得物空間模型(坐標),依物空間模型修正拍攝影 像偏移、變形等問題,達到影像正射化處理。傳統正 射化使用轉換函數,過程中需配合數值地形模型產生 之正射影像,不僅校正幾何變形,同時解算各像點之 地面坐標。現行拍攝的 UAV 影像解算中,因高解析度 影像拍攝,加上高重疊率,計算後能獲得大量密點雲 坐標資訊,豐富的密點雲資訊亦能提供作為模型,幫 助影像進行正射化處理。UAV 影像正射化過程,以密 點雲物空間坐標及影像色彩為主要資訊,依共線式逐 像元將灰度值(色彩)倒投影於一空白平面影像中, 轉換過程若影像坐標為非整數,可由重新取樣計算獲 得灰度值,再將該灰度值回填至空白影像中(圖3)。

紋理分析

基腳保護工塊屬於固定形狀、大小人工構造物, 於影像呈現較自然環境更具穩定紋理特徵,較容易於影 像中搜尋獲得基腳保護工塊之區域。紋理分析主要分為 結構型與統計型。結構型,僅適用於非常規則紋理; 統計型,以灰階共生矩陣(Gray Level Co-occurrence Matrix,GLCM)進行數值計算^[9]。應用對象基腳保護 工塊本身結構雖非常規則,但其擺放方法,依照現場的 狀況而有所不同,因此保守採用統計型紋理分析。

影像灰階值統計方式可分為一階(first-order)與二 階(second-order),其中一階統計包括灰階平均值、變 異數及直方統計等,一階統計方式優點為簡單明瞭且計 算快速,但是卻不足以完整描述影像整體;二階統計如 GLCM矩陣,能完整提供影像灰階值空間分布資訊,但 需進一步量化為單一數值形式,提供電腦分析作使用。 1970年代亦有學者提到十四種可量化 GLCM 矩陣,配 合移動視窗及摺積(convolution)對原始影像進行紋理 量化,求得各種不同紋理影像(textural image)^[10]。

產生 GLCM 影像過程如圖 4 所示,原始影像大小 為 11 × 11,其量化範圍為 2bit,灰階值範圍介於 0 至 3 之間,而 GLCM 移動視窗大小為 5 × 5。接著以量化範 圍 2 bit 為維度,建立 4 × 4 的 Co-occurrence 矩陣。Cooccurrence 矩陣是根據 GLCM 移動式窗內與像元空間 關係所產製,其中包含兩個變數,像元與像元間的距 離(d)以及角度(θ),如圖 5 是以 d = 1, $\theta = 45^\circ$,所 產生 Co-occurrence 矩陣,當距離越小,越能描述局部 紋理規則。一般而言,距離 d = 1最為普遍,並考慮其

圖4 灰階值0至3原始影像

圖 5 Co-occurrence 矩陣產製示意圖

對稱性挑選角度; Co-occurrence 矩陣建立,採取四個 方向平均值,並進而計算 Co-occurrence 矩陣中計算統 計指標。

本研究提出六種統計指標,包含 Angular Second Moment (ASM)、Contrast (CON)、Entropy (ENT)、 Homogeneity (HOM)、Variance (VAR)及 Correlation

(COR)。ASM 由 GLCM 各元素值的平方和(式(2)), 用來量測灰階變化的均匀性,當影像上某區域越均匀 時,GLCM 影像值會集中在對角線上,其他則接近 於 0;CON 表示影像的對比性,其值與對比程度成 正比(式(3))。ENT 則描述影像的紋理雜亂程度(式 (4)),若影像的圖樣隨機性越高,其值越大;HOM 亦 稱為 Inverse Difference Moment,為衡量影像的均調性 (式(5));VAR 則是以變異量描述影像的紋理性質(式 (6)),而 COR 以相關性描述影像的紋理性質(式(7)), 最後再將計算統計值回填於影像中,建立光譜影像。

$$ASM = \sum_{i=1}^{G} \sum_{j=1}^{G} [p(i, j)]^2$$
(2)

$$CON = \sum_{i=1}^{G} \sum_{j=1}^{G} p(i, j)(i-j)^{2}$$
(3)

$$ENT = \sum_{i=1}^{G} \sum_{j=1}^{G} p(i, j) \Big(-\ln[p(i, j)] \Big)$$
(4)

$$HOM = \sum_{i=1}^{G} \sum_{j=1}^{G} \frac{p(i, j)}{1 + (i - j)^2}$$
(5)

$$\sigma_{i} = \sqrt{\sum_{i=1}^{G} \sum_{j=1}^{G} p(i, j)(i - \mu_{i})^{2}}$$

$$\sigma_{j} = \sqrt{\sum_{i=1}^{G} \sum_{j=1}^{G} p(i, j)(j - \mu_{j})^{2}}$$
(6)

$$COR = \sum_{i=1}^{G} \sum_{j=1}^{G} p(i, j) \left[\frac{(i - \mu_i)(j - \mu_j)}{\sigma_i \sigma_j} \right]$$
(7)

其中 G: GLCM 維度大小, p(i, j): Co-occurrence 矩陣元 素值, μ 為最或是值。

SVM 分類

影像分類有非常多種類的方法,本研究目標將影 像分為基腳保護工區與非基腳保護工區等兩種區域, 屬於二元分類,其中支持向量機分類為二元分類優秀 方法之一。支持向量機具分離非線性問題之能力,解 決傳統分類器過度學習和維度轉換問題。相關學者於 高光譜影像分類研究中,透過增加影像波段進行影像 分類,分類方法包括最大概似法、決策樹、類神經網 路和支持向量機等四種方法回,成果顯示支持向量機 法於精度上有較佳的表現。此外,支持向量機分類法 在高維特徵空間中,使用線性函數並進行空間分劃區 學習系統,於複雜性的模型資訊和學習能力,根據有 限樣本尋求最佳分類[12]。支持向量機方法可分為三 種,線性可分支持向量機、線性不可分支持向量機、 非線性可分支持向量機。SVM 分類屬於統計理論中監 督式機器學習方法,其流程包含輸入數筆人工分類資 料、製作機器學習印本資料,再以演算法撰寫程式, 並善用特徵性質。

SVM 透過一個超平面(hyperplane),將兩個不同 的集合分開,以二維例子解釋,目標能以一條線將黑 點和白點分開,且期待這條線距離兩集合邊界越大越 好,如此一來能明確分辨各點所屬集合(圖6),並經 由尺度調整,使得超平面與集合距離在±1以內,式 (8)為超平面定義之平面方程式。

$$W \times X - b = 0$$

(8)

其中 W 為超平面上單位法向量,X 為超平面上任一點 坐標向量,b 為常數 $b \in (-1.0)$ 。

超平面與集合之距離定義為*d*,計算如(式(9))所示,可得知集合與集合邊界距離為兩倍的*d*,即2/|*W*|。 由(式(9))搜尋支持向量機分類法中最大可能之距離邊界,並確定超平面之位置,最後由計算之超平面,將影像中所有像元點進行分類,如區分基腳保護工與非基腳保護工之區域。

$$d = \left| |b+1| - |b| \right| = \frac{1}{|W|} \text{ if } b \notin (-1, 0) \tag{9}$$

二元影像形態學

影像分類中容易呈顯雜訊及分類錯誤區域,這些 區域對於基腳保護工辨識可能造成辨識錯誤。因此本研 究中採用二元影像形態學尋找基腳保護工區域最大外包 絡多邊形,希望透過外包絡的多邊形,將基腳保護工 區域整合,而定義其他區域為非基腳保護工範圍。依 據 Gonzalez 與 Woods 書本上說明^[13]:影像處理的形態 學(Morphological Image Processing)屬依據數學形態 學應用之一,並以數學理論作為運算基礎^[14]。影像形態 學主要用於二值化後影像,依使用者目的凸顯影像形狀 特徵,如邊界和連通區域等。除此之外,運算子也會同 時細化、修剪毛刺,常用於圖像預處理和後處理。形態 學操作結果除了影像本身,也和結構元素的形狀有關, 結構元素和空間域操作類似於濾波概念類似,以奇數矩 形視窗如3×3、5×5、7×7較常見使用。

影像形態學主要行為分為侵蝕(Erosion)、膨脹 (Dilation)、斷開(Opening)及閉合(Closing)。侵蝕 與膨脹皆能去除雜訊及連接破碎前景物功能(圖7), 其中侵蝕運算使影像收縮,去除不必要元素,運算過 程以輸入像素及其周圍像素,相對結構元素為1的像 素皆為 255 者,則輸入像素值設為 255;膨脹用來填 補隙縫,使影像看起來擴大,運算過程以輸入像素及 其周圍像素,相對於結構元素為1的像素值有一個以 上為 255 時,則將輸入像素的值設為 255。換言之, 當A 集合(輸入影像)受B 集合(結構元素)侵蝕, 以 $A \ominus B$ 表示;反之,當A 集合受B 集合膨脹時,以 $A \oplus B$ 表示。

由上述介紹運算子膨脹擴大影像、侵蝕收縮影像,兩種運算子可以組成更重要的形態學運算,如開放運算及封閉運算。開放運算先對結構元素 B 進行侵 蝕運算,再進行膨脹運算,其中侵蝕運算先將弱區域 或小區塊雜訊濾除,再經由膨脹運算將平滑輪廓。整 體開放運算使輪廓平滑,消除細小部份斑點、填補輪 廓缺口及截斷窄短連結部位,運算如式(10)所示。

$$A \circ B = (A \odot B) \oplus B \tag{10}$$

封閉運算對結構元素 B 進行膨脹運算,再進行侵 蝕運算(式(11)),其中膨脹將區域旁小雜訊合併,但 遠離區域的雜訊仍呈孤立狀態,再經由侵蝕運算,去 除遠距離雜訊,透過封閉運算也可使輪廓平滑化。

$$A \bullet B = (A \oplus B) \odot B \tag{11}$$

本研究中基腳保護工區域存在較細長連結區域, 故採取封閉式運算結合附近較小區域,再藉由侵蝕運 算消除遠離區域雜訊。封閉運算過程中,將形成多個 候選外包絡多邊形,皆視為候選基腳保護工區域,再 由各候選外包絡多邊形面積計算,以最大面積區域作 為基腳保護工目標區域,藉此條件搜尋防坡堤範圍。

邊緣偵測

透過基腳保護工區域搜尋成果,以多尺度邊緣偵 測基腳保護工輪廓,並套疊輪廓於原正射影像。多尺度 邊緣偵測(multiscale edge detection),以不同尺度平滑 濾波器與原始影像作迴旋積計算,得到不同尺度濾波影 像,再抽取其邊緣,最後疊合所有尺度邊緣資訊,集合 為邊緣影像。邊緣偵測法以 Canny 邊緣偵測法應用最為 普及,透過像素最大梯度值搜尋影像邊緣點,其中梯度 計算採高斯濾波器導數,並使用雙臨界值檢測強邊緣與 弱邊緣,並輸出強邊緣連接的弱邊緣^[15]。Canny 邊緣 偵測法能有效偵測影像邊緣,但受銳角與交點存在斷 裂、多重標度等條件限制,而本研究採用最大外包絡 多邊形,多邊形屬於凸多邊形,大幅減少銳角與斷裂 點發生機會。因此本研究將於邊緣偵測分析中,採用 Canny 邊緣偵測方法, 搜尋基腳保護工區域邊界, 並將 邊緣偵測成果套疊於原正射影像上,完成半自動化基 腳保護工偵測。

研究成果分析

研究區域

台灣以濁水溪為最大溪流,每當颱洪季節來臨, 大量洪水沖刷侵蝕河岸;枯水期受季風吹拂,河岸移 動漂砂改變河道及流向,顯著流量變化影響河岸堆置 防波提之穩定性,因此本研究選定台灣南投縣濁水溪 鄰近名竹大橋之河岸區域(圖8),進行 UAV 影像蒐 集,並進行基腳保護工塊辨識分析。實驗採用大疆科 技有限公司 DJI Phantom 4 空拍機,搭載 2,000 萬像素 一英吋之 CMOS 影像感測器,沿河岸約 300 公尺,以 高度約 100 公尺連續拍攝,像幅重疊率縱向達 70 至 80%、橫向達 80 至 90%,地面解析度達 10 公分等級。

UAV 單張影像(圖9)經過裁切與正射化處理, 紅色框區域為本研究中實驗目標區域。圖10顯示基腳 保護工區域色調與河岸相接近,將採基腳保護工規則 紋理特徵進行分類。

辨識與分類成果

辨識基腳保護工區域流程,先將原始彩色正射影像 轉灰階影像(圖11),助於後續GLCM與紋理統計影像 分析(圖12),紋理統計影像選擇,包含紋理統計式及 視窗大小,將影響分類成果。本研究於紋理統計中,選 擇 variance、correlation、dissimilarity、entropy、second moment與 dissimilarity等六種統計指標,進行基腳保護 工塊區域辨識,接續進行影像分類。

透過 SVM 監督式分類方法,並挑選紋理影像視窗 大小,依照目標物大小決定,本研究共建立3×3、5× 5、7×7、9×9、11×11、13×13 以及35×35 等視窗大 小的 GLCM 統計影像,因研究目標為基腳保護工塊擺放 形狀,若小於基腳保護工塊的紋理,可假設為分類錯誤

圖 8 濁水溪名竹大橋

圖 9 濁水溪名竹大橋基腳保護工區

圖 10 研究區域

或是雜訊,其中35×35為最大視窗大小,亦是基腳保 護工顯示於影像上大小。分類成果如圖13所示,六種 紋理統計影像以等權方式,放入SVM分類器中,將影 像資料分類成基腳保護工區域與非基腳保護工區域。

圖 11 研究區域灰階影像

(b)

(ď

(f)

影像分類成果顯示,當視窗越大則破碎區塊越 少,相對降低雜訊;然而,基腳保護工區域受非基腳 保護工區域影響,導致分類成果整體區域超過原有基 腳保護工區域。此外,當視窗過大(如視窗 35 × 35), 目標區域中許多部分細節因統計計算而消失,並導致 形狀嚴重變形,不符後續成果分析使用。綜合上述判 斷,視窗大小選擇必須衡量細節與非目標物多寡之平 衡。本次實驗中,以13 × 13(一半目標物是窗大小) 為較佳視窗大小,同時兼具雜訊濾除與保留大部分細 節,且目標物分類形狀符合接受範圍,因此後續將採 用該視窗大小作為分析使用。

(b) $\overline{5 \times 5}$

(d) 9×9

(c) 7×7

(e) 11×11

(f) 13 × 13

(g) 35 × 35 圖 13 不同 GLCM 視窗 SVM 分類成果影像

圖 12 (a) GLCM 3 × 3 影像; (b) Variance 影像; (c) cor-

影像; (f) second moment; (g) dissimilarity

relation 影像;(d) dissimilarity 影像;(e) entropy

(c)

(e)

以13×13 視窗大小,採用紋理統計影像進行 SVM 分類,如圖14所示。初步分類成果能顯示基腳保護 工區域形狀與範圍,但圖幅中仍有許多破碎區塊被視 為基腳保護工區域,因此透過影像形態學之封閉運算 子,利用先膨脹後收縮方式,將基腳保護工破碎區域 進行聚合,同時雜訊部分會受該運算子影響,分別聚 合成不同區塊。經測試,影像上面積小於1,000 pixel 影像,可視為雜訊進行消除,成果如圖15所示。由 於封閉計算與雜訊消後的成果,可得多個候選基腳保 護工區域,經由計算各多邊形之區域面積,並保留最 大面積區域作為目標區域,其成果如下圖16。再藉由 canny 邊緣偵測區域邊界(圖17),並套疊在正射影像 上並匯出最小矩形提供使用者快速辨識(圖18),即可 完成基腳保護工區域辨識。

圖 15 使用封閉計算消除

雜訊

圖 14 六種紋理統計影像 SVM 分類

圖16 消除非基腳保護 工區域

圖 17 canny 邊緣偵測

圖 18 半自動化基腳保護工區域偵測成果

自動化圈選將基腳保護工區域納入,提供維護者 快速圈選,表1為人通辨識基腳保護工區域(真實範 圍)與自動化辨識區域面積統計表,真實範圍於影像中 涵蓋19,172 pixel,自動辨識圈選區域為24,818 pixel, 顯示自動化圈選區域大於真實範圍,主要因為基腳保 護工塊於實驗區域密集排列,之間較小孔隙透過封閉 計算,併入基腳保護工範圍中;而自動辨識基腳保護 工所在位置與真實情況相符合,透過表2評估半自動 化圈選成果顯示,正確圈選占92.5%,非基腳保護工區 域且無圈選占98.1%,兩者正確率達九成以上,能夠穩 定且正確提供使用者自動辨識基腳保護工。

表1 基腳保護工區域與自動化辨識區域面積統計表

	面積 (pixel)
真實範圍	19172
自動辨識圈選區域	24818

表2 半自動化基腳保護工區域圈選成果量化表

	應圈選區域 (pixel)	不應圈選區域 (pixel)
有圈選	17727 (92.5%)	7091 (1.9%)
無圈選	1445 (7.5%)	373577 (98.1%)

結論與建議

本研究整合應用影像分類、紋理影像分析技術、影 像形態學與邊緣偵測等多種技術,針對基腳保護工區域 進行半自動化圈選與偵測,自動化程序降低人工圈選時 間與調查成本,作為前後期基腳保護工區域辨識比較, 達到高效率基腳保護工養護與監測作業。基腳保護工塊 為人工構造物,影像上保有顯著紋理特色,透過紋理影 像與搜尋視窗有效偵測基腳保護工範圍,當視窗大小為 目標物一半大小時,可避免因視窗果過小導致影像分類 上雜訊過多或基腳保護工塊上的細節不被納入等問題。 完成分類,以影像形態學將目標區域進行連結與雜訊濾 除,合併影像中以面積最大者為最後基腳保護工區域, 最後藉由邊緣偵測,並將範圍套疊於原始影像上。成果 顯示圈選辨識正確率達9成以上,雖有部分圈選辨識錯 誤,若能改善影像分類精度便能再提升辨識品質。未來 可嘗試機器學習,提高影像分類精確程度,並且針對不 同時期基腳保護工影像,進行多時期基腳保護工區域變 遷研究;再者,測試其他區域影像,修正或改善自動化 程序,分析壩提變遷情況,提供高效能且高精度基腳保 護工辨識技術。

誌謝

本研究由科技部專題研究計畫補助(計畫編號 MOST 106-2625-M-009-006、MOST 106-2119-M-002-021以及 MOST 106-3011-F-002-003),特此誌謝。

參考文獻

- 葉克家(2013),濁水溪現行丁壩工法於側向侵蝕與縱向沖刷之效 能檢討(2/2),經濟部水利署第四河川局委託研究計畫成果報告書。
- 黃昭雄、徐逸祥、朱子豪(2005),無人載具(UAV)應用於海 岸濱線追蹤調查以鹽寮福隆沙灘為例。台灣地理資訊學會年會暨 學術研討會論文集,10月27日至28日,臺灣台中市。
- 3. 楊宗岳、羅國峯、林永仁、黃勤財(2009),應用無人飛機於公 路防、救災之可行性探討。臺灣公路工程,第35卷第12期,頁 2-9。
- 4. 蕭國鑫、尹承遠、劉進金、遊明芳、王晉倫(2003), SPOT 影像 與航照資料應用於崩塌地辨識之探討,航測及遙測學刊,8(4)頁 29-42。
- 林欣平(1998), 車牌字元萃取。國立交通大學電機與控制工程 研究所碩士論文,臺灣新竹市。
- 6. 阮宗憲、韓仁毓(2015),以影像為基礎之公路標誌自動化辯識

技術。第三十四屆測量與空間資訊研討會,8月27-28日,臺灣 宜蘭市。

- 7. 楊深惠、張良正(2012),應用衛星影像辨識與河道水理演算於 濁水溪沖積扇地下水數值模擬。國立交通大學土木工程學系碩士 論文,臺灣新竹市。
- Wolf, P. R., and Dewitt, B., 2000. Elements of Photogrammetry with Applications in GIS (Vol. 3). New York: McGraw Hill.
- Beliakov, G., James, S. and Troiano, L., 2008. Texture recognition by using GLCM and various aggregation functions. In Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence). IEEE International Conference on (pp. 1472-1476). IEEE.
- Haralick, R. M., and Shanmugam, K., 1973. Textural features for image classification. IEEE Transactions on systems, man, and cybernetics, (6), 610-621.
- Pal, M., and Mather, P. M., 2003. An assessment of the effectiveness of decision tree methods for land cover classification. Remote sensing of environment, 86(4), 554-565.
- Bartlett, P., and Shawe-Taylor, J., 1999. Generalization performance of support vector machines and other pattern classifiers. Advances in Kernel methods—support vector learning, 43-54.
- Gonzalez, R. C., and Woods, R. E., 2002. Digital Image Processing. 3rd Edition, Prentice Hill, India.
- Vapnik, V. N., 1999. An overview of statistical learning theory. IEEE transactions on neural networks, 10(5), 988-999.
- Canny, J., 1987. A computational approach to edge detection. In Readings in Computer Vision (pp. 184-203).

向您約稿

本刊出版有關土木水利工程之報導及論文,以知識性、報導性、及聯誼性為主要取向,為一綜合性刊物,內容分工程論 著、技術報導、工程講座、特介、工程新知報導及其他各類報導性文章及專欄,歡迎賜稿,來稿請 email: service@ciche.org.tw 或寄 10055 台北市中正區仁愛路二段 1 號 4 樓,中國土木水利工程學會編輯出版委員會會刊編輯小組收,刊登後將贈送每位 作者一本雜誌,不再另致稿酬;歡迎以英文撰寫之國內外工程報導之文章,相關注意事項如後:

- 工程新知及技術報導,行文宜簡潔。
- 技術研究為工程實務之研究心得,工程講座為對某一問題廣泛而深入之論述與探討。工程報導為新知介紹及國內外工程之報 導。
- ▲刊並歡迎對已刊登文章之討論及來函。
- 工程論著及技術研究類文章,由本刊委請專家1~2人審查,來文請寄電子檔案,照片解析度需300dpi以上。
- 文章應力求精簡,並附圖表照片,所有圖表及照片務求清晰,且應附簡短說明,並均請註明製圖者及攝影者,請勿任意由網站下載圖片,以釐清版權問題。