DOI: 10.6653/MoCICHE.201802_45(1).0021

林宏達/台灣高鐵維修處軌道電力部軌道電力管理課 副工程師

本文主要介紹台灣高鐵裝設於 EM120 軌道線形檢測車上的光學非接觸式軌道檢測分析設備,並針對 該設備的組成、原理及規格作一統整性之說明介紹,期使軌道維修專業人員對此一光學非接觸式軌道檢測 分析設備能有充分的了解與認識。另一方面,藉由此光學非接觸式軌道檢測分析設備於正線上執行勤務檢 測時,將可快速地檢選出軌道基礎設施瑕疵缺陷處,維修人員亦可即時掌握與監控路線設備狀態,以及增 進維修作業迅速執行、達成維修作業資訊自動化、解決大量檢測資料處理與減少人工的介入,朝向 CBM (Condition-Based Maintenance)之維修目標。

前言

研究背景

安全、高速與舒適為高速鐵路營運的三大要件。 而在這三要件之中,安全仍為首要之目標。高速鐵路 行車安全是指高速列車於行車過程中,不發生造成人 員傷亡、設備損壞與危及正常行車的事故。由於高速 列車的安全運行主要端賴於車輪與軌道的理想完美接 觸,所以除了車輪系統的正常保養與維護之外,高速 鐵路的軌道基礎設施(包括:軌頭、扣件、軌枕、道 碴、道版)更應經常保持其良好的完善狀態,則此時 必須對於軌道的狀態進行適時的巡檢與管理,以便能 及時地準確發現軌道基礎設施的缺陷瑕疵位置,以進 一步擬訂出後續的維修及保養作業。

研究動機

就鐵路軌道運輸而言,由於列車與軌道的相互作 用,將會造成軌道幾何線形的不斷變化,這將會影響 列車行駛的舒適性與安全性。所以台灣高鐵的 EM120 軌道線形檢測車一直在正線上藉由接觸式的量測設 備進行軌道線形的監測勤務(如圖1中紅色箭頭指示 處)。但是在設備條件限制之下,EM120軌道線形檢 測車僅能測得鋼軌的線形資料(軌距、超高、扭曲、 水平正矢與垂直正矢),無法得知其他軌道基礎設施 (例如:扣件、軌枕、道碴、道版)的健全情況。

圖 1 EM120 軌道線形檢測車的接觸式軌道線形檢測設備(紅 色箭頭指示處)

備註:台灣高鐵裝設於 EM120 軌道線形檢測車上的光學非接觸式軌道檢測分析設備為向義大利 MerMec 公司採購,本文 內部份圖表資料亦從提送的技術文件中所摘錄。

研究目的

為了進一步提高台灣高鐵的維修品質,以及讓軌 這設施的監測工作能更全面性,軌道檢測課於2012年 採購了新的光學非接觸式軌道檢測分析設備並安裝於 EM120軌道線形檢測車上,期望當此光學非接觸式軌 道檢測分析設備實際於正線上進行軌道基礎設施巡檢 時,能使得人工徒步巡檢工作負擔更加減輕及對有疑 慮處保持監控,並且進一步提高民眾對於台灣高鐵的 信賴程度與搭乘意願。

安裝於 EM120 之光學非接觸式軌道檢測 分析設備

光學非接觸式軌道檢測分析設備主要由鋼軌波狀 磨耗量測系統(Rail Corrugation Measurement System, 簡稱 RCMS)、鋼軌剖面測繪系統(Rail Profile Measurement System,簡稱 RPMS)及電腦視覺影像 全自動軌道檢測系統(Computer-vision system for the automatic inspection and measurement of the track,簡稱 V-CUBE)等三個子系統所共同組成的一光學非接觸式 軌道檢測分析設備,並安裝設置於 EM120 軌道線形檢 測車(如圖 2 所示)上。以下將就上述三個子系統的 組成構件與檢測原理,依序說明如下:

鋼軌波狀磨耗量測系統

(Rail Corrugation Measurement System, 簡稱 RCMS)

此系統主要用於量測、分析與評估鋼軌發生波狀 磨耗的分布情況,在巡檢量測結束後經電腦分析整理 列出超出參考標準值的瑕疵缺陷發生位置並提出預 警,以提供後續維修單位之處置。鋼軌波狀磨耗量測系 統(RCMS)主要包含左右各有一個鋼軌波狀磨耗檢測 單元(Rail Corrugation Detection Unit,簡稱 RCDU)、 支撐結構、冷卻器與遮光罩,如圖 3 所示。

何謂鋼軌波狀磨耗(Rail Corrugation)?^[1]

鋼軌波狀磨耗(Rail Corrugation)為沿鋼軌縱向的 鋼軌頭頂部發生凹凸起伏並以某一定間隔的磨耗現象 (如圖4所示),一般在轉彎段與爬坡段較易發生。鋼 軌波狀磨耗的發生原因可能是車輪與鋼軌之間發生滑 動(Slipping)所導致,但確切的原因尚未有定論。此 外,根據相關的研究顯示,當列車經過有鋼軌波狀磨 耗的區段時,行車所引起的振動將對軌道造成損害, 並且車體的振動將會變大,進一步造成車廂內噪音及 降低旅客乘坐的舒適性。

圖 4 鋼軌的波狀磨耗 [5,6]

鋼軌波狀磨耗量測系統(RCMS)的主要組成

本文之鋼軌波狀磨耗量測系統(RCMS)由左右 兩個鋼軌波狀磨耗檢測單元(RCDU)及框架結構 (Frame Structure)所組成,如圖3所示。此外,為了 可以完整接收到雷射光源的反射,數位相機的裝設角 度有經過特別設計。

每個鋼軌波狀磨耗檢測單元(RCDU)(如圖 5 所示)至鋼軌頂部的距離大約為 285 mm,而每個鋼軌波 狀磨耗檢測單元(RCDU)內都含有獨立的電子設備, 以使用於控制與管理局部的圖像處理。此外,基於全 數位技術(Totally Digital Technology)與 FPGA(Field Programmable Gate Array),現場可編程輯開陣列裝 置,可使得電子設備具有較高的整合性並控制全部的 擷取系統。另一方面,考量鐵路行車衝擊對於電子設 備的影響,所以盡量減少在量測單元內部裝設複雜的 硬體設備。鋼軌波狀磨耗檢測單元(RCDU),其主要 由下面兩個物件所組成:

(b) RCDU 單元內相機與雷射的位置圖 5 鋼軌波狀磨耗檢測單元(RCDU)的組成

(1) 雷射光源(Laser Source)

圖 6 雷射光源

為符合對雷射光束的要求,鋼軌波狀磨耗檢 測單元(RCDU)上的雷射(如圖6所示)為由 TECNOGAMMA製造。所使用的雷射光源波長為785 與810 nm,其最大的功率(Power)為5W;在一般 情況下,使用的功率大約為2.5W。此外,為避免雷射 兩極真空管的溫度影響,使用了珀爾帖單體(Peltier Cell)或稱固態式致冷器,以求獲得較高雷射光束的 品質、穩定性及長期使用壽命。另一方面,針對雷射 安全性的問題,由於經鋼軌反射距離的能量消減與鋼 軌波狀磨耗檢測單元(RCDU)上的遮光罩阻隔,使 得雷射功率衰減的非常快,所以其危害性相對已減至 最低。

(a) CMOS 數位相機

(b) FPGA Logic Card
 (c) CMOS 感測器
 圖 7 CMOS 數位相機的組成

鋼軌波狀磨耗量測系統(RCMS)上的CMOS (互補式金屬氧化半導體影像感測器)照相機為 TECNOGAMMA 所製造的高速全數位相機,其像素尺 寸為1024×1280、解析度5μm,而允許最高的取樣頻 率(Sampling frequency) 為 450 frames/sec。CMOS 照 相機的組成包括:鏡頭、FPGA Logic Card 與 CMOS 感 測器,如圖7所示。若行車速度小於或等於80 km/hr 時,最小的取樣間隔為5mm,因此由鋼軌波狀磨耗量 測系統(RCMS)計算的最小波長為10mm,在此情 況下,適用的波長範圍為 10~30 mm、30~100 mm、 100~300 mm 及 300~1000 mm;若行車速度大於 80 km/hr 且小於或等於 160 km/hr 時,最小的取樣間隔為 10 mm,因此由鋼軌波狀磨耗量測系統(RCMS)計 算的最小波長為 20 mm,在此情況下,適用的波長範 圍為 20 ~ 30 mm、30 ~ 100 mm、100 ~ 300 mm 及 300 ~1000 mm。此外,為避免量測系統受到額外光源的 影響,所有的相機上皆特別設置了光學濾光鏡(Optic filter) •

鋼軌波狀磨耗量測系統(RCMS)的量測原理

鋼軌波狀磨耗量測系統(RCMS)的量測原理主要 根據下述兩個原理,其說明如下:

(1) 光學三角測量原理(Optical Triangulation Principle)^[2]-

用於資料擷取

利用雷射光源投射一亮點或直線條紋於待測物體 表面,由於表面起伏及曲度變化,利用追蹤一光點在 空間上移動時,經光學系統成像後像點間的相對關 係,可推導出物點的角位移量,並以三角幾何關係判 讀出待測點的距離或位置座標等資料。如圖 8 所示, 當雷射光源(P1 點)垂直投射至受測物體表面(Pa 點)後會產生反射至光學感測器(P2 點),下一步可依 據下面的三角函數關係式,求得雷射光源(P1 點)至 受測物體表面(P2 點)間的距離 Da:

$Da = D1 \times tan (A2)$

上式中 D1 為 雷射光源(P1 點)與光學 感測器 (P2 點)間的距離(此為一固定值),係根據初始系統 的機構設計而定;A2 為光學 感測器接收到反射光源的 入射角度,可藉由光學 感測器(P2 點)處接收資料的 比例函數計算求得。利用上述簡單的幾何計算即可重 建全線鋼軌的波狀磨耗分布情況。據此,便可進一步 與原始資料相互比對,評估找出可能發生鋼軌波狀磨 耗的位置。

(2) 正弦轉換函數(Versine transfer function)^[3] - 用於資 料分析

當實際執行量測時,因為每次雷射光源投射時的 能量(在此指雷射光源的波長)與鋼軌接觸時間均不 相同,在頻譜中所產生的尖峰振幅值無法固定,因此 可利用轉換函數之計算可有效減低投射能量與表面接 觸時間的影響,使得同一介面反射所得之轉換函數頻 譜中的幅值(Peak value)能夠穩定,而進一步可由介 面振幅判斷介面的性質。

鋼軌波狀磨耗量測系統(RCMS)的技術規格

鋼軌波狀磨耗量測系統 (RCMS) 的技術規格, 如 下表1所示

表1 鋼軌波狀磨耗量測系統(RCMS)的技術規格

	技術規格
量测速度	小於或等於 160 km/hr
尺寸	每一個鋼軌波狀磨耗檢測單元(RCDU) 為 830 × 140 × 251 mm
聖	每一個鋼軌波狀磨耗檢測單元(RCDU) 為40 kg (若包含遮光罩時為 45 kg)
取樣間隔	小於或等於 10 mm
設備量測參數	20~30 mm (極短波長) 30~100 mm (短波長) 100~300 mm (中波長) 300~1000 mm (長波長)
重現度 *RMS = 均方根值 (Root Mean Square)	波長範圍 10~30 mm 內大於 20 μm, 95% 的 RMS* 波長範圍 30~100 mm 內大於 20 μm, 95% 的 RMS* 波長範圍 100~300 mm 內大於 60 μm, 95% 的 RMS* 波長範圍 300~1000 mm 內大於 200 μm, 95% 的 RMS*

分析結果的輸出

當所有檢測工作結束後,使用設置於 EM120 軌 道線形檢測車上的工業電腦執行檢測資料的分析與 結果的輸出。而所有的資料分析與結果輸出,為利 用工業電腦內的兩個後處理程式「Corrugation」及 「Visualize」,如圖9及10所示。「Corrugation」程式 主要設計於負責檢測資料的擷取、後續分析結果的整 理與鋼軌波狀磨耗量測系統 (RCMS) 的相關參數之設 定,並且可及時顯示軌道波狀磨耗量測系統(RCMS) 所擷取的檢測數據。「Visualize」程式主要設計於顯 示出軌道波狀磨耗的分布情況與後續診斷量測系統 (Diagnostic Measurement System)的分析結果,並提 供 MS-EXCEL 格式的鋼軌波狀磨耗檢測結果報告輸出 (如圖 11 所示)。藉由此鋼軌波狀磨耗檢測結果報告, 使用者可快速且有效率的檢選出有缺陷瑕疵之位置, 並可針對有疑慮處保持監控及預警。

鋼軌剖面測繪系統

(Rail Profile Measurement System, 簡稱 RPMS)

此系統主要用於測繪、分析與評估鋼軌剖面的磨 耗情況及軌距(Rail Gauge),在巡檢量測結束後經電 腦分析整理列出超出參考標準值的瑕疵缺陷發生位置

圖 9「Corrugation」後處理程式

圖 10「Visualize」後處理程式

RAIL CORRUGATION DEFECT REPORT												
File	File Name FILE NAME				Date		DATE					
Tr	ack		TRACK				Track I	Track ID			TRACK ID	
Line				L	INE		Train Dire	ction	TRAIN DIRECTION			CTION
Ope	rator			OPE	RATOR	Annotati	ion	ANNOTATION			ION	
	_											
		Poe	tion		Worst D	efect						
Parameter	Side	Start	End	Length	Position	Value [µm]	Threshold Value (µm)	Excess	Ala	rm	DATE DEALT WITH	ANNOTATIONS
RMS 300-1000	Left	25151,68	25153,68	2	25151,93	84	80	4	MT			
RMS 300-1000	Right	25187,68	25191,43	3,75	25189,43	83	80	3	MT			
RMS 300-1000	Left	25225,93	25225,93	0	25225,93	92	80	12	MT			
RMS 100-300	Left	25227,68	25227,68	0	25227,68	83	80	3	MT			
RMS 30-100	Left	25228,43	25228,68	0,25	25228,68	48	40	8	MT			
RMS 100-300	Left	25227,93	25229,18	1,25	25228,43	175	120	55	55			
RMS 100-300	Left	25229,43	25229,43	0	25229,43	101	100	1	ML			
RMS 300-1000	Left	25226,18	25230,93	4,75	25227,43	141	120	21	55			
RMS 300-1000	Left	25231,18	25231,18	0	25231,18	85	80	5	MT			
RMS 30-100	Left	25249,93	25249,93	0	25249,93	57	50	7	ML			
RMS 30-100	Left	25250,18	25250,18	0	25250,18	69	60	9	55			

圖 11 MS-EXCEL 格式的鋼軌波狀磨耗檢測結果報告

並提出預警,以提供後續維修單位之處置。鋼軌剖面 測繪系統(RPMS)將裝設在 EM120 軌道線形檢測車 後方 (REAR) 的轉向架上, 如圖 2 所示。鋼軌剖面測 繪系統(RPMS)主要包含四個鋼軌剖面測繪檢測單元 (Rail Profile Detection Unit, 簡稱 RPDU)、框架支撐 結構、遮光罩,如圖 12 所示。

圖 12 鋼軌剖面測繪系統 (RPMS)

鋼軌剖面測繪系統(RPMS)的主要組成與量測 原理

本文之鋼軌剖面測繪系統(RPMS)主要由四個 鋼軌剖面測繪檢測單元(RPDU)及框架支撐結構 (Frame Structure)所組成,如圖12所示,而每個 鋼軌剖面測繪檢測單元(RPDU)內的組成物件有 雷射光源(Laser Source)、CMOS 數位相機(CMOS Digital Camera),如圖13所示,而鋼軌剖面測繪系統 (RPMS)的基本原理為光學三角測量原理(Optical Triangulation Principle)。由於組成物件、基本原理與鋼 軌波狀磨耗量測系統(RCMS)完全相同,所以在此不 再贅述。

圖 13 鋼軌剖面測繪檢測單元 (RPDU) 內部的組成物件

此處需特別說明為在鋼軌剖面測繪檢測單元 (RPDU)內的雷射光源不是垂直投射至受測物體表 面,而是以一特別設計的角度裝設,如圖14所示。此 外,為了完整接收雷射光源的反射,數位相機裝設的角 度亦經過特別的設計。另一方面,設置了三種系統的防 護措施(CMOS、光學濾光鏡、軟體濾除),以避免太 陽光或其他光源的干擾,並容許在任何光源條件下進行 操作,無須任何特別的調整。在實際操作鋼軌剖面測繪 檢測單元(RPDU)內的兩個雷射群組時,分別採用了 不同波長的雷射光源,這是為了避免兩側相機的熱暈效 應(Blooming Effect)。所謂的熱暈效應,係指由於雷射 光束在傳輸過程中加熱光束傳輸路徑上的介質,進而改 變了介質的局部折射率,使得光束向折射率大的方向偏 轉,從而產生光束畸變、擴展等現象^[4]。

圖14 鋼軌剖面測繪檢測(RPDU)單元內相機與雷射的裝設 角度位置

鋼軌剖面測繪系統(RPMS)的技術規格

鋼軌剖面測繪系統(RPMS)的技術規格,如下表 2所示

表 2	鋼軌剖面測繪系統	(RPMS)	的技術規格
-----	----------	--------	-------

	技術規格
量测速度	小於或等於 160 km/hr
設備量測參數	垂直、踏面下 14 mm 處水平、45° 等磨耗位置、軌道傾角及軌距等五種參數
尺寸	每一個鋼軌剖面測繪檢測單元(RPDU) 為 234 × 352 × 469 mm
重量	每一個鋼軌剖面測繪檢測單元(RPDU)為 42 kg
系統解析度	0.05 mm
剖面量测精度	$\pm 0.05 \text{ mm}$
豎向磨耗量測 精確度	± 0.2 mm
横向磨耗量测 精確度	± 0.2 mm
最大取樣頻率	小於或等於 450 frames/second

分析結果的輸出

當所有測繪檢測工作結束後,使用設置於 EM120 軌道線形檢測車上的工業電腦執行檢測資料的分析 與結果的輸出。而所有的資料分析與結果輸出, 為利用工業電腦內的兩個後處理程式「RAILS」及 「Visualize」,如圖 15 及 16 所示。「RAILS」程式主要 設計於負責檢測資料的擷取、後續分析結果的整理與 鋼軌剖面測繪系統(RPMS)的相關參數之設定。經 由自動比對檢測擷取與參考初始的鋼軌剖面資料(包 括:鋼軌斜面、鋼軌絕對參考位置),最後計算可得鋼 軌的磨耗分布情況,並繪製出兩種鋼軌剖面資料間(檢 測擷取與參考初始)的重疊鋼軌剖面圖。「Visualize」 程式主要設計於顯示出軌道磨耗的分布情況與後續診 斷量測系統(Diagnostic Measurement System)的分析 結果,並提供 MS-EXCEL 格式的鋼軌磨耗檢測結果報 告輸出(如圖 17 所示)。藉由此鋼軌磨耗檢測結果報 告,使用者可快速且有效率的檢選出有缺陷瑕疵之位 置,並可針對有疑慮處保持監控及預警。

電腦視覺影像全自動軌道檢測系統

(Computer-vision system for the automatic inspection and measurement of the track , 簡稱 V-CUBE)

此系統為電腦視覺影像全自動檢測分析與評估軌 道基礎設施(包括軌頭、扣件、軌枕、道碴、道版) 的健康狀態,並在巡檢結束後經電腦分析整理列出超 出參考標準值的瑕疵缺陷發生位置並提出預警,以提 供後續維修單位之處置。此檢測系統(V-CUBE)將裝

圖 15 「RAILS」後處理程式(紅色、黃色分別表示參考初始 與檢測瀕取的鋼軌剖面資料)

圖 16 「Visualize」後處理程式(紅色箭頭與框線處表示為鋼 執磨耗超出參考值)

1	A	В	C	D	E	F	G	Н	1	J	K
7 8 9	Reil	Rail Type	KP Start	End	Length	Worst Wear PK	G (mm)	Threshold Value	Ехсева	Allar	m
10	Let	60Kg-K	8k503,00	8k503,00	0.0	8k503,00	-4,7	-4,0	0,7	T1	
11	Leit	60Kg-K	8k527.50	8k527.50	0.0	8k527.50	-4.1	-4.0	0.1	T1	
12	Let	60Kg-K	8k545,50	8k545,75	0,3	8k545,75	-9,5	-8,0	1,5	T3	
13	Let	60Kg-K	8k546,00	8k546,00	0,0	8k548,00	-11,4	-10,0	1,4	T4	
14	Right	60Kg-K	8k587,50	8k588,25	0,8	8k587,50	-5,5	-4,0	1,5	T1	
15	Right	60Kg-K	8k606,00	8k606,00	0,0	8k606,00	-4,7	-4,0	0,7	T1	
16	Right	60Kg-K	8k606.25	8k606,50	0.3	8k606.50	-7.6	-6.0	1,6	T2	
17	Right	60Kg-K	8k606,75	8k606,75	0,0	81606,75	-8,8	-8,0	0,8	T3	
18	Right	60Kg-K	8k607,00	8k607,25	0,3	81607,25	-12,2	-10,0	2,2	T4	
19	Right	60Kg-K	8k607,75	8k607,75	0,0	81607,75	-11,0	-10,0	1,0	T4	
20	Right	60Kg-K	8k608,00	8k608,00	0.0	8k608,00	-5,0	-4,0	1,0	T1	
21	Right	KS-50Kg-N	8k675,75	8k675,75	0.0	8k675,75	-5,3	-4.0	1,3	T1	
22	Right	KS-50Kg-N	8k676,00	8k676,00	0,0	8k676,00	-6,8	-6,0	0,8	T2	
23	Right	KS-50Kg-N	8k676,25	8k676,25	0.0	81676,25	-5,7	-4,0	1,7	T1	
24	Leit	KS-50Kg-N	9k112,25	9k117,75	5,5	9k114,25	-5,2	-4,0	1,2	T1	
25	Let	KS-50Kg-N	9k506,75	9k507,00	0.3	9k506,75	-11,7	-10,0	1,7	T4	
26	Right	KS-50Kg-N	9k506,75	9k507,00	0.3	9k506,75	-6,7	-6.0	0,7	T2	
27	Let	KS-50Kg-N	9k507,25	9k507,25	0,0	9k507,25	-6,0	-4,0	2,0	T1	
28	Right	KS-50Kg-N	9k507,25	9k507,25	0,0	9k507,25	-4,6	-4,0	0,6	T1	
29	Right	60Kg-K	11k003,00	11k003,50	0,5	11k003,50	-4,6	-4,0	0,6	T1	
30	Right	60Kg-K	11k016,75	11k017,00	0.3	11k017,00	-4.4	-4.0	0,4	T1	
31	Let	KS-50Kg-N	11k321,50	11k321,50	0.0	11k321,50	-4.6	-4.0	0.6	T1	
32	Let	KS-50Kg-N	11k321,75	11k321,75	0.0	11k321,75	-8,3	-6,0	0,3	T2	
33	Left	KS-50Kg-N	11k322,00	11k322,00	0,0	11k322,00	-4,6	-4,0	0,6	T1	

圖 17 MS-EXCEL 格式的鋼軌磨耗檢測結果報告

設在 EM120 軌道線形檢測車前方(FRONT)的轉向架 上,如圖 2 所示。電腦視覺影像全自動軌道檢測系統 (V-CUBE)包含兩個 V-CUBE 箱型檢測單元、支撐結 構,如圖 18 所示。

圖 18 電腦視覺影像全自動軌道檢測系統 (V-CUBE)

電腦視覺影像全自動軌道檢測系統(V-CUBE)的 主要組成及三個次系統

電腦視覺影像全自動軌道檢測系統(V-CUBE)主要由兩個 V-CUBE 箱型檢測單元、支撐結構所組成,如圖 18 所示。而每個 V-CUBE 箱型檢測單元(如圖

19 所示)內的主要組成物件有雷射光源、數位相機。 由於組成物件與前面兩系統(RCMS、RPMS)完全 相同,所以在此不再贅述。系統內藉由 PLC(可編程 序控制器,Programmable Logic Controller)整合遙控 V-CUBE 箱型檢測單元的電力、輔助設備與週遭參數, 圖 20 所示為 V-CUBE 檢測系統內兩種不同的 IR 紅外 光光源(LED 及 LASER)。此外,電腦視覺影像全自 動軌道檢測系統(V-CUBE)主要由下述三個次系統所 構成(如圖 21 所示),其說明如下:

圖 19 V-CUBE 箱型檢測單元的構造

圖 20 V-CUBE 檢測系統的 IR 紅外光光源(LED 及 LASER)

圖 21 V-CUBE 軌道檢測系統內三個次系統的 配置分布情況

(1) 軌道檢測系統(Track Inspection System, 簡稱 TIS)

軌道檢測系統(TIS)為一軌道設施狀態全自動控 制的掃描攝影系統,此系統內包含自動巡檢時拍攝鋼 軌與周圍設施的相機,以及提供物件一穩定與協調照 明的光源系統,表3為軌道檢測系統(TIS)所使用的 部分參數。

軌道檢測系統(TIS)的作業原理(如圖22所 示),為隨著檢測車之移動,相機每隔1mm或更短的 間距擷取一條掃描線,此間距的設定應使軌道檢測系 統(TIS)能足夠辨識出混凝土、軌枕或軌頭的裂縫 (在系統中設定為 0.5 mm 的取樣間隔)。每一條掃描 線有1024像素,而每個像素的灰階(Gray Level)值 範圍由0至255(最暗的顏色為黑色,以數值0表示 之;最亮為白色,以數值255表示之)。灰階影像為除 了純黑和純白之外,還可以包含深淺不同的灰色,亦 即在黑色與白色之間加上不同的明暗度。圖 23 所示為 軌道檢測系統(TIS)所擷取出的典型圖像。

Motion

700 mm

Line-scan Camera Downweb Direction Observed Crossweb Direction

表3 軌道檢測系統(TIS)的部分參數

參數	數值
檢測範圍	700 mm
感測器像素	1024 像素
水平解析度	0.7 mm/ 像素
縱向解析度(取樣步長)	0.5 mm
相機	高速數位線性
光源系統	IR LED

(2) 軌道測繪系統 (Track Measurement System, 簡稱 TMS)

軌道測繪系統(TMS)為一軌道連續剖面形狀的 的掃描攝影系統,表4為軌道測繪系統(TMS)所使 用的部分參數。

軌道測繪系統(TMS)的作業原理(如圖24所 示),為隨著檢測車移動所投射出的雷射光與相機獲得被 觀察物件某處的剖面形狀(係指物件某剖面上高度的分 布情況),最後連續組合依據量測取樣步長間距所得到的 物件剖面形狀,即可重建出被觀察物件的 3D 外形,圖 25 所示為軌道測繪系統(TMS)所擷取的典型圖像。

表4 軌道測繪系統(TMS)的部分參數

參數	數值
檢測範圍	1400 mm
量測取樣間距	5 mm
横向解析度	1.1 mm/ 像素
光源系統	IR LASER

圖 22 軌道檢測系統 (TIS) 的作業原理

0.5 mm 的取

樣步長

圖23 軌道檢測系統(TIS) 撷取的典型圖像

Line

圖 24 軌道測繪系統 (TMS) 的作業原理

圖 25 軌道量測系統 (TMS) 撷取的典型圖像

(3) 軌頭檢測系統(Track Head Inspection System, 簡稱 THIS)

軌頭檢測系統(THIS)為鋼軌軌頭的掃描攝影系統,表5為軌頭檢測系統(THIS)所使用的部分參數,而圖26所示為軌頭檢測系統(THIS)所擷取的典型圖像。

表5 軌頭檢測系統(THIS)的部分參數

參數	數值
檢測範圍	160 mm
量测取樣間距	0.3 mm
横向解析度	0.31 mm/ 像素
光源系統	IR LED

圖 26 軌頭檢測系統 (THIS) 撷取的典型圖像

電腦視覺影像全自動軌道檢測系統(V-CUBE)的 技術規格

電腦視覺影像全自動軌道檢測系統(V-CUBE)的 技術規格,如下表6所示:

表 6 電腦視覺影像全自動軌道檢測系統(V-CUBE)的技術 規格

圖 27 V-CUBE 箱型檢測單元的尺寸

分析結果的輸出

當完成資料擷取與整理後,所有影像的局部資訊 (例如:位置、方位及有無瑕疵缺陷等等)將完整串 聯起來,系統會自動將有瑕疵缺陷處的影像局部資訊 撿選出來。雖然為全自動化的檢測系統,但仍還有一 些圖像需要離線後處理。在這種情況之下,若處於即 時(Real Time)影像擷取階段的影像局部資訊將被暫時存放於硬碟之中,待即時影像擷取結束後,自動把 其他瑕疵缺陷處的影像再挑選出來。下面圖 28 至圖 35 所示為電腦視覺影像全自動軌道檢測系統(V-CUBE) 所撿選出軌道設施有瑕疵缺陷處的影像局部資訊之範例:

SSC: 82040 Rail: Right Line: Lausanne Est - Bern Track: ROM 20.1-33.2 Km: 40.368 Type: Joint Gap Size: Min thickness: 2 mm Class: 2 Info: Notes:

SSC: 79660 Rail: Right Line: Lausanne Est - Bern Track: ROM 33.1-51.1 Km: 40.960

Type: Joint Gap Size: Min thickness: 3 mm Class: 1 Info: Notes:

圖 29 絕緣墊片處的檢測報告文件

圖 30 扣件的光學特徵描述

圖 31 全自動的扣件檢核

圖 32 不同位置處扣件的巡檢報告文件 (紅圈處表示扣件遺失)

圖 34 混凝土道版裂縫處的相關資訊 (紅色箭頭指示處)

結語

随著列車運行速度的提高,對於列車的安全、舒 適性提出了更高的要求,同時運行速度的提高,對於 軌道基礎設施的損壞亦會加劇。因此,加強軌道基礎 設施的動態檢測與即時管理軌道狀態,確保鐵路運輸 安全,儼然已成為鐵路工作中的一項重要勤務。高速 鐵路營運首重的是行車安全性,所以日常的維修、保 養與檢測勤務工作不可少。藉由本文對於光學非接觸 式軌道檢測分析設備的統整性說明,應可讓軌道維修 專業人員對此一檢測儀器能有初步的認識與了解。本 系統之採用將可快速且有效率地將鋼軌的波狀磨耗、 道版裂縫、鋼軌剖面形狀、墊片、扣件或軌枕等有軌 道基礎設施有瑕疵缺陷之處,逐筆列出以供維修單位 後續的處置。古語有云「工欲善其事,必先利其器」, 所以可預期的是,當此光學非接觸式軌道檢測分析設 備正式上線使用於軌道基礎設施巡檢時,將可使得軌 道基礎設施的監控更有效率且完備,並進一步建立台 灣高鐵對於自身維修品質的高標準。

參考文獻

- . 黃民仁,「新世紀鐵路工程學」,文笙出版社,台北市,初版,民 國 94年。
- 2. 陳郁鴻(2005),「光學三角測量方法量測家蠶肌肉振動與脈搏變

圖 35 全自動的道碴檢測

化之研究」,國立中央大學生命科學研究所,碩士論文,中壢市。 3. 張翔傑(2003),「研究以敲擊回音法之表面波位移推導轉換函數 的可行性」,私立朝陽科技大學營建工程系,碩士論文,台中市。

- 楊瑞科、王新寬、姚有群、吳建(2009),「強激光大氣傳輸穩態 熱量效應研究」,西安電子科技大學學報(自然科學版),第36 卷,第4期。
- Meehan, P. A. and Daniel, W. J. T., "Project#18-Rail Corrugation prediction and prevention", Cooperative Research Centre for Railway Engineering and Technologies (Rail CRC), Research report, Australia, 2007. (http://www.uq.edu.au/~uqpmeeha/SumProj18_05. pdf)
- 6. 波狀摩耗 保線ウィキ,このページの最終更新は 2009 年 5 月 23
 日.(http://hosenwiki.com/index.php?title=%E6%B3%A2%E7%8A% B6%E6%91%A9%E8%80%97)