

DOI: 10.6653/MoCICHE.201802 45(1).0016

推動的質認如可思點與企品圖

楊正君/交通部高速鐵路工程局 副局長

軌道技術研究暨驗證中心,將為交通部在軌道產業領域之技術幕僚及國內技術資源整合平台,並依業務發展需要或接受政府機關或其他機構委託,從事軌道系統技術規範、標準及安全檢驗基準之研擬,軌道系統技術研發、產品測試、檢驗及驗證服務,軌道設備與零組件分析改善及維護解決方案之提供、協助辦理軌道事故調查、安全檢查、人員訓練與檢定及其所需之相關技術支援,國內外軌道技術之資訊蒐集及交流合作,以協助提升軌道產業自主技術能力與品質,確保軌道系統之安全及穩定,並與國際接軌。

前言

近年全球盛行藉由軌道運輸改造城市,使都市發展與大眾運輸緊密結合。而軌道科技日新月異,車輛、供電、號誌等系統持續朝輕量化、模組化、小型化發展,且應用技術更是不斷推陳出新,復以國內軌道建設漸成規模,長期使用外國技術,絕非永續營運之良策。

臺北捷運及台灣高鐵長年累積之績效及經驗,已 建立軌道國際品牌,目前正是整合國內產業,向東南 亞及其他海外市場爭取軌道建設及營運之契機。

交通部刻正積極推動軌道技術研究暨驗證中心計畫(下稱本計畫),以期成立專責機構,作為國內軌道 設備檢測驗證與技術研發平台,除提升國內產業關鍵 技術自主能力,將合格產品提供營運機構使用,克服 原廠零組件供應箝制外,並尋求拓展海外商機。

國內軌道工業現況

軌道產業現況及發展

參酌經濟部工業局對我國軌道產業之現況調查與 分析資料,未來軌道產業將聚焦在車輛系統,並以臺 鐵通勤電聯車及輕軌車輛為發展重點;至高鐵及捷運 宜優先著重在維修備品國產化。

- (1) 臺鐵:以 EMU 800 型通勤電聯車為例,在車體製造 與組裝、內裝、照明、空調、聯結器等非關鍵項目 已有國產實績,國產化比例達 52%;未來將持續朝 車門系統、電氣系統、轉向架、煞車系統、牽引系 統、整車設計等關鍵項目發展。
- (2) 輕軌:淡海輕軌在車體製造與組裝、轉向架框、轉向 架組裝測試等項目,已逐步累積國產化經驗,國產化 比例達23%;後續在安坑輕軌將延伸到內裝、座椅、 照明、空調、玻璃、電纜、配電盤等項目,未來再進 一步朝轉向架、煞車系統、牽引系統、整車設計、供 電系統、號誌通訊系統等關鍵項目發展。
- (3) 高鐵及捷運:為克服原廠設備停產或維修成本過高之課題,各營運機構持續針對車輛、通訊、號誌、軌道、電力等系統,開發國產替代性物料。以高鐵車輛系統為例,近6年來已計開發3,437項國產維修物料,較國外備品可節省73%之採購成本,已初見成效。

為擴大維修備品市場規模,交通部督導台灣高鐵公司於 106 年 8 月 24 日舉辦「台灣軌道工業本土化商機說明會」,並要求高鐵、臺鐵、捷運盤點需求,合計釋出未來 10 年總金額約 498 億元之採購需求(包含高鐵 166 億元、臺鐵 284 億元、臺北捷運 48 億元)。說明會共吸引逾百家廠商參與,會後持續洽詢及表達有

意參與之廠商逾 20 家,顯見類似活動有助於促進軌道 產業及營運機構間之供需媒合。後續臺鐵、臺北捷運 及高雄捷運亦將聯合舉辦商源說明會。

軌道檢測驗證現況及能量

(1) 檢測驗證標準

目前國內軌道工業缺乏完善之檢測驗證標準,廠 商需依據業主開立之需求或設計規範進行檢測,其並 無一致性標準,端視個案而定,廠商難以適從。鑑於 檢測驗證之目的,在於確保產品在設計、製造、測試 過程符合一致性之標準,故制定國家標準將可作為業 主研擬採購需求及廠商生產製造之依循,並有助於確 保廠商技術能力、產品品質及推動軌道設備零組件規 格標準化,帶動國內軌道產業發展。

在推動軌道國產化之過程中,國內設備零組件之 品質是否與國外原廠物料一致,檢測驗證標準為重要 關鍵。以高鐵車廂座椅國產化為例,其座椅結構、椅 套布及椅墊必須通過靜態/動態強度、疲勞耐久、防 火耐燃等 30 餘項安全測試規範標準,始得取代原廠物 料,安裝在高鐵列車上。

軌道國家標準須與國際標準銜接與調和,以滿足國內及國外市場需求,減少貿易障礙並提升競爭力,故本計畫應參酌國內專業機構之建置經驗,先蒐集國際標準(如ISO、IEC、UIC)、區域標準(如歐盟EN)及國家標準(如日本JIS、德國DIN等)並進行研究分析,進而制定軌道國家標準。

(2) 檢測驗證現有能量

經初步盤點車測中心、中科院、工研院、電檢中心等國內專業機構之既有軌道檢測驗證與研發能量(詳表1),發現在電磁相容/干擾、材料疲勞耐久、結構強度、防火耐燃、環境、衝擊振動之檢驗或測試,已具備技術能力,雖大部分運用在航空、智慧車輛或電子產品,然倘經補強局部差異,將可延用在軌道系統。

各專業機構均樂見未來軌道技術研究暨驗證中心 (下稱軌道中心)成立後,能作為國內軌道產業檢測 驗證平台,以統整各機構既有技術能量,提供國內廠 商相關檢測驗證及研發技術服務;並建議應優先補足 軌道產業特有之檢測驗證儀器設備為宜,例如國內尚 缺乏高電壓、大電流、高強度、高速度之檢測驗證儀 器設備與技術能力,未來軌道中心可視產業需要朝此 類型技術發展。

表 1 國內專業機構軌道技術能量盤點

專業機構	具備能力	參與軌道專案
工業技術研究院	具備環境測試、動調 大負載場量等 大會 大會 大會 大會 大會 大會 大會 大學 大學 大學 大學 大學 大術 大術 大術 大術 大術 大術 大術 大術 大術 大術	電磁波檢測、振動及 噪音量測分析、地層 下陷量測分析、車輛 設備測試機台等
國家中山科學研究院	具備結構與材料、電磁波 量測、機械性能、電子零 組件、電磁相容、防潮防 火、材料性能、環境可靠 度等技術能量及儀器設備	固定螺栓螺母及墊
車輛研究測試中心	具備結構動/靜態強度、 疲勞耐久、噪音振動量測 分析、環境可靠度、碰撞 安全、電磁相容等驗證能 量及儀器設備	車輛座椅強度與乘適 性、工程車結構強 度、車輛水箱支架強 度分析等
台灣電子 檢驗中心	具備電磁相容測試、安規 測試、可靠度測試、通信 測試、噪音振動測試等驗 證能量及儀器設備	車輛電子設備電磁相容量測及可靠度測試等

軌道技術研究暨驗證中心

急迫性與必要性

舉凡日本、韓國、大陸、歐洲等軌道先進國家均設有軌道研究專責機構,作為產業發展後盾,泰國、印度亦積極推動建置。國內公路有車輛測試中心、安審中心,航運有中國驗船中心協助政府辦理標準制定、法定檢測、技術研發等業務,唯獨軌道仍欠缺類似機構,產業、營運機構及學界均大聲疾呼政府應儘速建置,晚做總比不做好。

觀察韓國在1990年以前軌道系統皆仰賴國外進口,當時韓國政府因系統不穩定且影響安全而備受困擾,並察覺長此以往將面臨國外廠商壟斷市場,採購及維護成本高漲,爰1996年毅然決定投資成立鐵路研究所,建立自主技術。經歷20年努力,不僅帶動產業發展,更使韓國躍升軌道車輛輸出國。而我國面臨相同窘境,是以本計畫顯有其必要。

我國軌道建設過去長期仰賴進口,投入大量成本 卻無法掌握關鍵技術自主能力,亦未能建立完善之軌 道系統規範標準與檢測驗證機制,無法形成產業供應 鏈,致使軌道建設形同消費行為,而不具投資性質。若未能藉由目前推動中之多項前瞻軌道建設及車輛購置計畫,引導國內產業積極參與並提升自主技術,恐將難以擺脫國外廠商壟斷市場之困境。

規劃業務

- (1) 受託研擬軌道系統技術規範、標準及安全檢驗基 準,以利產業本土化及國際接軌。
- (2) 提供軌道技術研發、產品測試、檢驗與驗證服務。
- (3) 提供軌道設備零組件分析改善及維護技術解決方 案,提升系統安全與穩定。
- (4) 受託辦理軌道事故調查、安全檢查、人員訓練與檢 定及其所需之相關技術支援。
- (5) 國內外軌道技術之資訊蒐集及交流合作。
- (6) 其他與軌道中心設立目的相關之事項。

功能定位

鑑於國內軌道檢測驗證及研發技術能量,分散在產官學研各界及營運機構,缺乏專責機構予以整合,且過去未建立完善軌道工業標準,難以形成產業供應鏈。因此,本計畫仿傚軌道先進國家作法,期企藉由成立國家級軌道技術專責機構,擔任扮演下列角色,負責研擬軌道系統技術規範與標準,建立軌道產品研發、測試、檢驗與驗證等技術,並整合國內既有技術能量,協助國內軌道產業逐步提升關鍵技術自主能力,確保國產設備零組件之安全、品質及標準化,及提供營運機構所需設備改善與維護支援,提升系統安全與穩定,進而促成我國軌道產業及軌道運輸長遠發展。

(1) 第三方公正機構

軌道中心將擔任交通部在軌道產業發展之技術幕僚,對產業政策提供技術建議、協助草擬部頒軌道系統技術規範及軌道產業國家標準,並在事故調查及安全檢查等監理業務,以公正第三方立場就事故肇因及安全關鍵事項提供專業技術分析。

(2) 與國內檢驗研究機構合作協助軌道產業發展

國內如中科院、工研院、金屬中心、電檢中心、 車測中心及各大專院校學術機構,已具備部分軌道設 備零組件之實驗、檢測及研發技術與儀器設備,惟欠 缺軌道技術整體發展策略與規劃,軌道中心將整合國 內技術資源,建立合作機制,扮演我國軌道技術發展 之主導角色。 透過技術研發並提供軌道產品檢測驗證服務,搭 配軌道規範標準之建立,可確保國產設備零組件之安 全、品質及標準化,帶動產業發展。

(3) 支援軌道營運安全及維修技術

倘能提升軌道設備零組件自製率且符合安全品質 規範標準,必可減少維修備品進口需求,進而降低營 運維修成本。另利用軌道中心檢驗技術與研發測試能 力,將提供鐵路、捷運及輕軌營運機構在維修過程及 備料開發方面所需之技術支援。

(4) 與國際接軌

藉由軌道先進國家持續發展軌道工業標準規範之 契機,軌道中心可做為我國軌道系統與國際接軌之重 要平台,並協助產業拓展海外商機,將合格商品外銷 其他國家。

圖1 軌道中心功能定位

發展重點

綜合前述軌道產業調查分析結果,並配合前瞻基礎 軌道建設及車輛購置計畫,初步歸納國內各軌道系統之 未來國產化發展項目如表 2。然為進一步探究其發展潛 力及優先順序,高鐵局召開軌道產業關鍵議題座談會, 邀集產官學界共同參與,以期確立軌道中心未來營運初 期所需建置之檢測驗證及研發儀器設備,並再視計畫執 行成效及初期技術能量滾動檢討後續發展。

表 2 國內軌道未來國產化發展項目

系統別	國產化發展項目	
臺鐵	車門系統、電氣系統、轉向架、煞車系統、牽引系統、整車設計等項目。	
輕軌	轉向架、煞車系統、牽引系統、整車設計、供電系統、號誌通訊系統等項目。	
高鐵及捷運	車輛、通訊、號誌、軌道、電力等系統維修零組件備品。	

此外,本計畫將以「不重複投資」、「不需一次到位,分階段建設」之原則辦理,即不重複建置國內專業機構既有儀器設備,並與各機構建立合作機制,整合資源共同發展軌道檢測驗證及研發業務。

籌備執行現況

(1) 計畫經費

本計畫奉行政院核定經費 41.76 億元,配合前瞻 基礎建設計畫編列特別預算辦理,其中第一期(106-107年)特別預算並於 106年8月經立法院審議同意編 列 2.57 億元,餘 36.79 億元將編列於第二期(108-109年)特別預算。該二期預算將作為軌道中心各項硬體 建設、營運業務規劃與籌設等作業使用,包含前述軌 道產業優先發展項目之檢測驗證及研發所需廠房、儀 器設備建置。

(2) 工程執行現況

高鐵局刻正辦理技術顧問服務招標作業,以期未 來協助辦理土建與設備廠房設計與監造、檢測驗證設 備規劃與採購、營運業務規劃與籌設、國內外軌道標 準蒐集與研析等作業。

(3) 組織籌備情形

未來營運組織將採設立公設財團法人方式辦理, 以兼顧適法性、用人彈性及業務長遠發展。高鐵局刻 正研擬「財團法人軌道技術研究及驗證中心設置條例」草案,後續將持續進行相關法制作業,並著手展開軌道中心籌備處成立準備事宜。

未來工作重點

推動動道產業發展策略

為提升軌道技術,帶動產業發展,交通部從軌道 系統規劃、興建、營運維修、重(增)置之全生命週 期角度,提出全面性軌道產業發展3大策略:

(1) 策略 1 一 籌組跨機關「軌道產業推動會報」

交通部會同經濟部、工程會共同籌組「軌道產業 推動會報」並自 107 年開始運作,未來該會報將擬定 軌道產業發展策略、研訂「軌道系統採購作業指引」、 促進產業供給需求媒合。

(2) 策略 2 一 建置「軌道技術研究暨驗證中心」

軌道中心將負責擬議軌道產業國家標準與規範、 提供檢測驗證服務與整合國內資源,並從事軌道技術 研究發展。

(3) 策略 3 一 提升維修零組件國產化比例

由營運機構盤點維修備品在地生產需求,並辦理商源說明會釋放商機,以吸引國內產業參與,媒合供需。

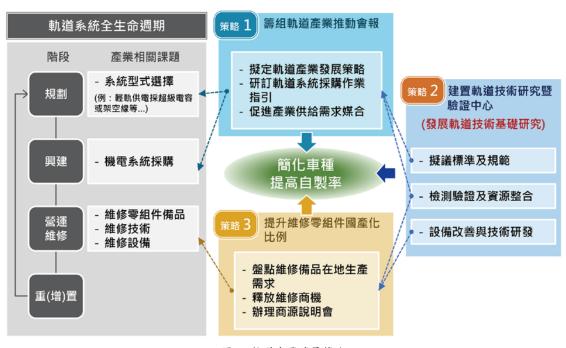


圖 2 軌道產業發展策略

落實軌道產業發展行動方案,達成 KPI 目標

行政院在加速投資臺灣專案會議中,要求交通部、 經濟部、工程會組成跨部會平臺,主動協助建立供應鏈 及媒合業者合作,並設定關鍵績效指標(KPI)及訂定 期程落實執行,因此未來將在「軌道產業推動會報」之 架構下,分別就興建(系統建置)及維修(營運階段) 2大區塊,提出軌道產業發展關鍵績效指標,並將積極 辦理下列軌道產業發展行動方案,以期達成目標:

- (1) 選定國產化關鍵項目,並舉辦產業座談會凝聚共識。
- (2) 研訂軌道系統採購作業指引,制定通用規格及解決 國內廠商投標資格問題。
- (3) 制定軌道產業國家標準。
- (4) 整合技術研發協助量產,加強軌道人才培育。
- (5) 推動軌道技術研究暨驗證中心計畫。
- (6) 定期釋出維修商機。

持續辦理軌道中心工程建設及組織籌備事宜

高鐵局將儘速完成技術顧問招標及簽約,並協同具工業技術與實驗室規劃能力之專業機構,期於 107 年起著手辦理工程設計與發包等作業,109 年底順利完工。

高鐵局亦將積極辦理「財團法人軌道技術研究及 驗證中心設置條例」相關法制作業,以期在107年底 前完成立法,進而於108年7月前完成財團法人申請 設立相關作業。

本計畫除由高鐵局會同技術顧問進行前述各項作業外,初期擬借重國內專業機構、營運機構、大專院校及政府機關之資源人力,成立軌道中心籌備處,共同參與軌道中心建設工程、檢測驗證業務規劃、國際標準研析、人才培育等前置準備工作,並視需要聘請國外專業顧問團隊協助,以汲取各方技術及經驗,順利完成軌道中心建置,並輔導財團法人接手營運。

結語

在推動前瞻基礎軌道建設及車輛採購計畫之際, 交通部提出軌道產業發展三策略,期能提升國內軌道 自主技術能力及擴大市場規模,而軌道中心之設立, 將可整合國內技術資源,共同推動軌道系統技術研發 及檢測驗證,帶動國內軌道產業轉型與升級,使我國 軌道工業發展日益蓬勃。

土木水利双月刊

向您約稿

本刊出版有關土木水利工程之報導及論文,以知識性、報導性、及聯誼性為主要取向,為一綜合性刊物,內容分工程論著、技術報導、工程講座、特介、工程新知報導及其他各類報導性文章及專欄,歡迎賜稿,來稿請 email: service@ciche.org.tw或寄 10055 台北市中正區仁愛路二段 1 號 4 樓,中國土木水利工程學會編輯出版委員會會刊編輯小組收,刊登後將贈送每位作者一本雜誌,不再另致稿酬;歡迎以英文撰寫之國內外工程報導之文章,相關注意事項如後:

- 工程新知及技術報導,行文宜簡潔。
- 技術研究為工程實務之研究心得,工程講座為對某一問題廣泛而深入之論述與探討。工程報導為新知介紹及國內外工程 之報導。
- ■本刊並歡迎對已刊登文章之討論及來函。
- 工程論著及技術研究類文章,由本刊委請專家 1~2 人審查,來文請寄電子檔案,照片解析度需 300 dpi 以上。
- 文章應力求精簡,並附圖表照片,所有圖表及照片務求清晰,且應附簡短說明,並均請註明製圖者及攝影者,請勿任意由網站下載圖片,以釐清版權問題。