

劉光晏/國家地震工程研究中心研究員兼交通大學土木系合聘副教授 廖文正/國立臺灣大學土木工程系助理教授 葉智強/國立臺灣大學土木工程系碩士

摘要

應用高強度混凝土 ($f'_c > 70$ MPa) 及高強度鋼筋 $(f_{x} > 685 \text{ MPa})$ 於結構物上具有縮減斷面尺寸、增加 使用空間及節省材料用量等優點。但高強度混凝土為 脆性材料,若添加鋼纖維可改善保護層早期剝落及橫 向鋼筋過於密集的問題。因此,本研究應用高強度端 鉤型鋼纖維於圓形鋼筋混凝土橋柱,探討鋼纖維取代 塑鉸區部分橫向鋼筋後之耐震行為。實驗結果顯示, 高強度鋼筋混凝土橋柱(New RC_D75_10T)可具備 與一般強度材料橋柱(RC D76 7T)相近之強度與韌 性。添加1.5% 體積取代率之端鉤型鋼纖維後,實心圓 柱之箍筋間距可放大2倍(New RC_D65SF_20T),空 心圓柱之繫筋可移除(New RC H75SF 10),位移韌性 除滿足公路橋梁耐震設計規範之規定外,並達到改善 施工性與抑制裂縫目的。此外,本研究發展以 TEASPA 及 OpenSees 為主之分析模式,可分別有效模擬側推與 遲滯迴圈行為。

前言

高強度混凝土與高強度鋼筋近幾十年來發展已 漸趨成熟,其特性為縮減斷面尺寸、節省材料用量與 減輕構件重量等,在實體結構應用上有許多優勢。但 高強度混凝土為脆性材料,破壞時為炸裂性破壞,因 此在應用上有其隱憂,本研究將探討在符合設計規範 的配置下高強度混凝土應用於橋柱的可行性。另一方 面為了確保橋柱的韌性行為因此在塑鉸區的橫向配筋 會較為密集,此現象可能造成混凝土澆置品質不佳。 綜合前面所述,如要兼顧塑鉸區的施工品質及良好的 韌性可考慮於鋼筋混凝土中加入新材料,取代部分橫 向鋼筋以增加圍束效果,同時確保良好的施工性。因 此,本研究發展以端鉤型鋼纖維取代部分橫向鋼筋的 橋柱,透過配比設計及反覆載重實驗,驗證材料與結 構行為。最後以TEASPA及OpenSees進行試體側推及 反覆載重之模擬,建立高強度鋼筋混凝土及添加端鉤 型鋼纖維橋柱之模擬方法。

橋柱實驗規劃

試體設計

本研究共計 5 座橋柱試體,相關設計參數如表 1 所示、斷面圖如圖 1 所示。對照組為 1999 年所進行之 普通強度鋼筋混凝土圓形橋柱 1 座¹¹¹;實驗組為高強 度鋼筋混凝土圓形橋柱 4 座,其中 2 座含有端鉤型鋼 纖維,如圖 2 所示。有關試體之命名方式簡述如下。 RC:一般強度鋼筋混凝土; NEW; New RC(高強度 鋼筋混凝土)。D:圓形實心橋柱; H:圓形空心橋柱。 76、65 及 75:直徑分別為 76、65 及 75 cm。7、10 及 20:箍筋間距分別為 7、10 及 20 cm。SF:含有鋼纖 維,體積體取代率為 1.5%。T:代表含有十字型或徑向 繫筋。NEW_D65_10T 及 NEW_H75_10T 參考 2009 年 版公路橋梁耐震設計規範¹²¹配置橫向鋼筋,但提高混 凝土與主筋強度。NEW_D65SF_20T、NEW_H75SF_10 則以前述兩座試體為基準,進一步採用鋼纖維混凝 土, 澆置於距離基礎 100 公分的範圍內。此外, NEW_ D65SF_20T 之 箍 筋 間 距 放 大 為 20 公 分, 為 NEW_ D65_10T 箍筋間距的 2 倍。NEW_H75SF_10 將繫筋移 除, 藉此與 NEW_H75_10T 比較鋼纖維混凝土取代橫 向鋼筋的可行性。

本實驗試體之設計原則係使實驗組各橋柱具有 與對照組 RC_D76_7T 相近之撓曲強度(1534 kNm)。根據 ACI 318-14 規範計算結果,NEW_D65_10T 及 NEW_H75_10T 之撓曲強度分別為1510及1560 kN-m。針對 NEW_D65SF_20T及 NEW_H75SF_10,計 算時如保守假設鋼纖維未提高混凝土極限壓應變及開 裂後的拉拔強度,則撓曲強度與前者相同,亦十分接 近對照組結果。

有關剪力強度之檢討,實心橋柱採用公路橋梁耐 震設計規範^[2]、空心橋柱則採用蔡益超等人^[3]提出之 計算方式,計入空心的影響及徑向繫筋的貢獻。鋼纖 維橋柱的混凝土剪力強度*V*_c,建議採用林安理^[4]提出 的剪力強度預測公式以計入鋼纖維的剪力效應,計算 結果如表 2 所示。

有關橋柱橫向圍束鋼筋用量,NEW_D65_10T及 NEW_H75_10T規範[2]進行設計。當選用D13為橫向 鋼筋,由下列公式取ρ_s之大者可換算箍筋間距,如表 3中。NEW_D65SF_20T及NEW_H75SF_10則依前述 結果但改變間距或根數。

$$\rho_s = 0.45 \frac{f_c'}{f_{yh}} \left[\frac{A_g}{A_c} - 1 \right] \tag{1}$$

$$\rho_{s} = 0.12 \frac{f_{c}'}{f_{yh}} \left(0.5 + \frac{1.25P_{e}}{f_{c}'A_{g}} \right)$$
(2)

其中, A_c 為柱心之面積(算至螺箍筋、閉合圓箍筋或橫 向箍筋之外緣),(cm²); A_g 為柱之全斷面積,(cm²); f'_c 為混凝土之規定抗壓強度,(kgf/cm²); f_{yh} 為橫向箍筋之 規定降伏強度,(kgf/cm²); P_e 為柱之係數化軸力,(kgf)。

計算結果顯示,NEW_D65_10T及NEW_H75_10T 的10公分箍筋間距符合規範。NEW_D65SF_20T為放大 NEW_D65_10T的箍筋間距2倍與加入鋼纖維混凝土所形 成的對照組,而NEW_H75SF_10為拿掉NEW_H75_10T 的所有繫筋並加入鋼纖維混凝土所形成的對照組。此 外,在不同橋柱形式下(實心、空心)可以比較由中空 斷面彌補因斷面縮減而造成的勁度減少的可行性。

圖 2 Dramix RC-80/30-BP 圓形斷面端鉤型鋼纖維

	_{言 庇} 外(內)	鋼纖維	£!		主筋			箍筋			
橋柱名稱	向皮	直徑	取代率	J _c	n-No.	ρ _g	f_y	No.@s	ρ	f_{yt}	聖川
	m	cm	%	MPa	-	%	MPa	cm	%	MPa	kN
RC_D76_7T	3.25	76	-	21	34-D19	2.15	420	D10@7	0.93	280	1400
NEW_D65_10T	3.25	65	-	70	16-D25	2.44	685	D13@10	1.35	420	1400
NEW_D65SF_20T	3.25	65	1.5	70	16-D25	2.44	685	D13@20	0.68	420	1400
NEW_H75_10T	3.25	75(35)	-	70	12-D25	1.76	685	D13@10	2.49	420	1400
NEW_H75SF_10	3.25	75(35)	1.5	70	12-D25	1.76	685	D13@10	1.69	420	1400

表1 橋柱試體設計參數

<u>- と 10曲 か くら</u>	A_{g}	A_e	f'_c	f_{yt}	F	V_s	V_c	V_n
試體名稱	cm ²	cm ²	kgf/cm ²	kgf/cm ²		tf	tf	tf (kN)
NEW_D65_10T	3318	2655	700	4200	0.308	80.34	23.74	104.08 (1020)
NEW_D65SF_20T	3318	2655	700	4200	0.308	40.17	114.7	154.87

表2(a) 實心圓形橋柱剪力強度

	α	A_{g}	A_e	f'_c	f_{yt}	D	D'	С	V_s	V_c	V_n
武恆石件		cm ²	cm ²	kgf/cm ²	kgf/cm ²	cm	cm	cm	tf	tf	tf (kN)
NEW_H75_10T	0.6	3456	2765	700	4200	68.73	41.27	20.72	135.8	21.2	157 (1539)
NEW_H75SF_10	0.6	3456	2765	700	4200	38.73	41.27	21.57	91.9	115.7	207.6 (2034)

表2(b) 空心圆形橋柱剪力強度

表2(c)	鋼纖維混凝土剪力	強度
•		

计画力松	A_g	$F_{e\!f\!f}$	d	а	r	f'_c	Vu	V_c
武臣石件	mm ²		cm	cm		MPa	MPa	kN
NEW_D65SF_20T	331831	2.679	59.96	325	0.0252	70	4.234	1124
NEW_H75SF_10	345575	2.679	69.96	325	0.0183	70	4.101	1134

表3(a) 橫向圍束鋼筋設計用量(式(1)計算結果)

计画力秘	f'_c	f_{yt}	A_{g}	A_c	ρ_s	S
武臣石仲	MPa	MPa	mm ²	mm ²		cm
NEW_D65_10T	70	420	331831	282743	0.013	10.41
NEW_H75_10T	70	420	345575	259181	0.025	9.98

橋柱材料與配比

NEW_D65_10T 及 NEW_H75_10T 試體採用高強 度混凝土,設計強度為70MPa,配比如表4所示; NEW D65SF 20T 及 NEW H75SF 10 於塑鉸區採用 高強度鋼纖維混凝土,設計強度為 70MPa,其配比如 表5所示,非塑鉸區則採用表4之配比。粗粒料採花 蓮 0.5" 碎石,寬厚比粒形分布約在 3 以下(其比重約 2.66,吸水率約0.7%)。細粒料採花蓮砂和大陸砂各 一半,比重分別為 2.62 及 2.60,細度為 2.8 ± 0.2。爐 石採用中聯爐石股份有限公司 4000 型,比重 2.9。砂 灰採用中聯提供之矽灰,比重2.21。強塑劑採用松江 實業股份有限公司之高性能聚羧酸流動化劑,比重介 於 1.035 ~ 1.075,代號為好泥友 HP100。上述 4 座橋 柱均採用台灣東和鋼鐵廠所提供之 SD685 D25 螺紋鋼 筋作為主筋,箍筋則採用 D13 之 SD420W 竹節鋼筋。 鋼纖維為比利時進口 Dramix RC-80/30-BP 材料,長 度約3 cm,直徑約0.38 mm,長細比 αf 為 79,彈性 模數 200 GPa。添加鋼纖維的橋柱其體積取代率皆為 1.5% °

表 3(b) 横向圍束鋼筋設計用量(式(2)計算結果)

计 皿曲 夕 千空	f'_c	f_{yt}	A_{g}	A_c	ρ_s	S
武胆石件	MPa	MPa	mm ²	N		cm
NEW_D65_10T	70	420	331831	1401400	0.012	11.77
NEW_H75_10T	70	420	345575	1401400	0.011	22.68

表4 高強度混凝土配比(單位:kgf/m3)

成分	水泥	細粒料	粗粒料	水	掺劑	爐石	矽灰
用量	400	719	844	165	14.88	170	50

表5 高強度鋼纖維混凝土配比(單位:kgf/m³)

成分	水泥	細粒料	粗粒料	水	摻劑	爐石	鋼纖維	矽灰
用量	372	1000	400	215	9.28	255	118	50

試體配置與加載方式

本研究於國家地震工程研究中心之反力牆區進行反 覆側推實驗,配置方式如圖3所示。基礎以4根69mm 高拉力螺桿穿過基礎預留孔後,透過鋼墊片鎖固於強力 樓板。柱頂之垂直力係透過軸力系統施加,由橫梁、油 壓千斤頂、高拉力螺桿、油壓幫浦、及地面之鉸接裝置 組成。油壓幫浦採回饋控制,能提供穩定之軸力。水平 力由1支油壓制動器提供,上限值為1000kN。

量測系統有鋼筋應變計,用以量測各層間變位角 下的鋼筋應變值。柱身側邊平行剪力方向則每15公分 架設1支角度計,可量測距柱底100公分內的角度變 化。距柱底100公分內另繪製,間距10公分之方格, 以便於實驗過程中描述裂縫位置。

加載歷程為先加載軸力,圓形橋柱約1400 kN,待 軸力穩定後接著以位移控制加載側力,依層間變位角 0.25%、0.5%、0.75%、1%、1.5%、2%、3%,直到有 明顯的主筋挫曲或斷裂時停止(此時側力值約為最大 側力值的50~60%)。每個層間變位角2個迴圈,如 圖4所示。

圖3 試體配置圖

實驗結果探討

遲滯迴圈比較

圖 5 所示為 NEW_D65_10T 及 NEW_H75_10T,分 別與 RC_D76_7T 之遲滯迴圈比較。由圖 5 可知,當使用 高強度鋼筋混凝土的圓形橋柱(實心、空心),如可滿足 規範之圍束規定,可發揮較普通強度鋼筋混凝土橋柱優 良的變形與消能能力。NEW_D65_10T 至 8% 橋柱才有明 顯側力值下降,NEW_H75_10T 也至 7% 的第二迴圈才有 明顯的側力值下降,均較 RC_D76_7T 的表現為佳。 圖 6 希望比較不同橋柱型式加入鋼纖維之效果。 當探討鋼纖維替代部分橫向鋼筋的行為表現時,NEW_ D65SF_20T 為將 NEW_D65_10T 的箍筋間距放大為 2 倍 並加入 1.5% 的鋼纖維,2 支橋柱在層間變位角 6% 之前 表現都相同,代表鋼纖維確實能發揮圍束效果,過了 6% 之後添加鋼纖維的橋柱圍束效果較差,因此側力值遞減 較快,2 支橋柱都實驗至 8% 時停止。NEW_H75SF_10 則是將斷面繫筋移除並加入 1.5% 鋼纖維,2 支橋柱在層 間變位角 6% 之前表現也幾乎相同,過了 6% 之後添加鋼 纖維的橋柱也較先發生側力值下降的現象,最後 NEW_ H75SF_10 較 NEW_H75_10T 提早 1 個層間變位角停止實 驗。因此,添加鋼纖維取代部分橫向鋼筋是可行的,鋼 纖維能取代橫向鋼筋並提供圍束效果,使原本韌性較差 的橋柱在層間變位角上的表現獲得改善。

圖 7 所示為比較不同型式之橋柱在遲滯迴圈上表 現的差異。在初始勁度方面 NEW_H75_10T 較 NEW_ D65_10T 大,原因主要是 NEW_H75_10T 擁有較大的 斷面剛度。兩者側力值幾乎相同,但 NEW_H75_10T 到 達極限側力的時間點較 NEW_D65_10T 早,會在層間 變位角 3% ~ 4% 時達到最大值;而 NEW_D65_10T 會 慢慢增加,直到 4% 之後才會漸漸達到最大值。NEW_ H75_10T 在層間變位角約 6% ~ 7% 時就會開始產生破 壞,推測是因為空心柱後期的圍束效果較差。

(a) NEW_D65_10T 與 NEW_D65SF_20T
(b) NEW_H75_10T 與 NEW_H75SF_10
6 有 / 無添加鋼鐵維之高強度鋼筋混凝土橋柱遲滯迴圈比較

-2 0 2

位移韌性

本研究的位移韌性求取方法為參照 FEMA 356^[5] 先 將試體遲滯迴圈包絡線轉換為等效的完全彈塑性(EPP) 模型,再根據 EPP 中的降伏層間位移(Δ_y)以及極限層 間位移(Δ_u),計算位移韌性($\mu = \Delta_u/\Delta_y$)。參考圖 8, K_e 為有效勁度, K_i 為初始勁度, V_y 為降伏側力, V_i 為最大 側力, α 為後降伏斜率, δ_i 為極限位移。根據試體強度 一位移包絡線,轉換成 EPP 模型的步驟如下:

- 定義極限位移(δ_i)對應的側力值為力量 位移曲 線下降段中最大側力的 80%。
- 2. 設定 α = 0 因為完全彈塑性模型取塑性段斜率的零。
- 3. 假定降伏側力 V, 為某值,該值不能大於最大側力。
- 4.取 0.6V_y的水平線與真實力量-位移所得的交點與 原點連線,並往上延伸至 V_y,超過 V_y後為一條水平 線,延伸至 δ,後停止。
- 5.此時原本的力量 位移曲線會有本身曲線下的面積,以上述方法得到的 EPP 模型也會有其雙線性以下的面積,重複調整δ,,直到兩者面積相等為止停止,代表兩者消散的能量相同。

表 6 所列為各橋柱依 EPP 模型之計算結果。比較 RC_D76_7T 與 NEW_D65_10T、NEW_H75_10T,因為 NEW_D65_10T 使用高強度材料所造成的斷面縮減會大 幅增加降伏位移,因此使位移韌性較 RC_D76_7T 小; 而這樣的現象可藉由 NEW_H75_10T 的空心斷面加大 勁度改善,可以有效降低降伏位移,並且使位移韌性 大幅上升,達到比 RC_D76_7T 更佳的結果。此外, NEW_D65SF_20T 藉由添加鋼纖維增加圍束效果,能 彌補原本韌性較差的行為,使位移韌性(4.54)接近 NEW_D65_10T 的表現。NEW_H75SF_10 鋼纖維提供 的圍束效果明顯較差,不如 NEW_H75_10T 理想。

圖 8 FEMA 356 降伏位移計算方式

表6 橋柱位移韌性

試體	RC_ NEW_		NEW_	NEW_	NEW_
名稱	D76_7T	D65_10T	D65SF_20T	H75_10T	H75SF_10
Δ _y (%)	1.00	1.75	1.76	1.16	1.23
Δ. (%)	5.54	8.00	8.00	7.47	6.71
$\mu = \Delta_u / \Delta_y$	5.52	4.58	4.54	6.44	5.45

從比較中可得知以鋼纖維填補韌性是可行的,可 以使原本韌性較差的橋柱(箍筋間距放大2倍或移除斷 面繫筋)達到與符合規範的橋柱接近的表現。意即,鋼 纖維能取代部分的橫向鋼筋提供圍束效果。另外根據規 範^[2],所有橋柱都符合規範位移韌性≥3之要求。

有效勁度

有效勁度的計算採用完全彈塑性模型,將其降伏 值與原點相連的斜率當作有效勁度 K_e。單曲率橋柱之 側向勁度如下所示:

$$K_e = \frac{3EI_{eff}}{L^3} \tag{3}$$

由實驗值所推估之 K_e 及 (3) 式可反算 EI_{eff}值,計算結 果如表 7 所示。一般應用上因無法準確獲得 EI_{eff},因 此許多規範都用經驗公式推估。首先採用斷面的計算 彈性模數值與全斷面慣性矩,相乘得到全斷面剛度 E_eI_g 值,再乘以一經驗係數便可以得到有效勁度值 EI_{eff}。

本研究節分別採用規範[2]與文獻⁶計算彈性模 數,如下所示:

$$E_c = 15000 \sqrt{f_c'}^{[2]} \tag{4}$$

$$E_c = k_1 k_2 \times 3.35 \times 10^4 \times \left(\frac{\gamma}{2400}\right)^2 \times \left(\frac{f'_c}{60}\right)^{1/3} {}^{[6]}$$
(5)

試體 名稱	RC_ D76_7T	NEW_ D65_10T	NEW_ D65SF_20T	NEW_ H75_10T	NEW_ H75SF_10
K_e (tf/mm)	1.58	0.91	0.88	1.31	1.35
$\frac{EI_{eff}}{(10^7 \text{ kN-m}^2)}$	1.808	1.041	1.007	1.499	1.545

表7 有效勁度與有效剛度

其中, k_1 為粒料修正係數, k_2 為摻料修正係數,分別如 表 8 及表 9 所示。針對本次實驗之橋柱取 $k_1 = 1.0 \times k_1$ = 0.95 進行計算,最後求出 EI_{eff} 與 E_cI_s 之比值,並與規 範中的經驗係數比較。ACI^[7]建議取 0.5 E_cI_s 作計算, 而 FEMA 356^[5]對於柱軸力小於 0.3Agf c者之有效勁 度建議亦為 0.5 E_cI_s 。

由表 10、表 11 可知採用規範 [2] 之 *E*_c*I*_s 值較大, 則 *EI*_{eff}/*E*_c*I*_s 較小。主要原因為規範 [2] 計算方法對於高 強度混凝土會有高估的現象。如使用文獻^[6] 建議值計 算,高強度材料的比值介於 0.3 ~ 0.4 之間,較一般的 經驗值低。而普通強度材料的橋柱 RC_D76_7T 的比值 約為 0.5,與一般的經驗值相仿。

表8 粒料修正係數對照表 6

<i>K</i> ₁	Type of Coarse Aggregate
1.20	Crushed Limestone, Calcined Bauxite
0.95	Crushed Quartizitic Aggregate, Crushed Andesite, Crushed Basalt, Crushed Claysate, Crushed Cobbel Stone
1.00	Coarse Aggregate Other Than the Above

表9 掺料修正係數對照表 [6]

K_2	Type of Addition
0.95	Silica Fume, Ground Glanulated Blasted-Furnace Slag, Fly Ash Fume
1.10	Fly Ash
1.00	Addition Other Than the Above

表10 全斷面剛度 E _c	l _g (單位:107 kN-m ²)
--------------------------	--

試體 名稱	RC_ D76_7T	NEW_ D65_10T	NEW_ D65SF_20T	NEW_ H75_10T	NEW_ H75SF_10
$E_c I_g^{[2]}$	3.56	3.512	3.512	5.93	5.93
$E_c I_g$ ^[6]	3.416	2.715	2.715	4.645	4.645

表	11	有效刚度	EI_{eff}	與全斷	面剛度	$E_c I_g$	比值
---	----	------	------------	-----	-----	-----------	----

試體 名稱	RC_ D76_7T	NEW_ D65_10T	NEW_ D65SF_20T	NEW_ H75_10T	NEW_ H75SF_10
$EI_{eff}/E_cI_g^{[2]}$	0.508	0.296	0.287	0.253	0.261
EI_{eff}/E_cI_g [6]	0.529	0.378	0.366	0.323	0.333

勁度遞減

試體在反覆側推實驗中會因為破壞愈趨嚴重,裂縫愈來愈多而造成側向的勁度遞減。判定試體在不同層間變位角的側向勁度可由遲滯迴圈得出,參照 FEMA 356^[5]對於遲滯迴圈內有效勁度的定義如下:

$$k_{eff} = \frac{\left|F^{-}\right| + \left|F^{+}\right|}{\left|\Delta^{-}\right| + \left|\Delta^{+}\right|} \tag{6}$$

其中, $|F^-|$ 、 $|F^+|$ 分別代表某一遲滯迴圈中的最小側力 值及最大側力值, $|\Delta^-|$ 、 $|\Delta^+|$ 分別某一遲滯迴圈中的最 小位移/最大位移,必需與 F^- 、 F^+ 相對應。

圖9所示為側向有效勁度與層間變位角之關係。 比較 NEW D65 10T 與 NEW D65SF 20T, 如圖 9(a) 所 示,在層間變位角為 0.25% 時 NEW_D65SF_20T 的值較 NEW_D65_10T小,但超過0.25%後至6%之前兩者勁 度的遞減表現一模一樣,可見將箍筋間距放大且加入鋼 纖維對於側向勁度的表現並無明顯的影響。比較 NEW_ H75_10T 與 NEW_H75SF_10, 如圖 9(b) 所示, 2 支橋柱 在側向勁度的遞減上有相同的趨勢,這樣的趨勢一直維 持至 7%。比較 NEW_D65_10T 與 NEW_H75_10T, 如 圖 9(c) 所示, 2 支橋柱的形式不同, NEW_D65_10T 因為 直徑小所以一開始的勁度較小,NEW H75 10T 則擁有 較大的初始勁度。從 0.25% 至 4% 之間 NEW_D65_10T 的側向勁度都是小於 NEW H75 10T 的,但可以看到 NEW H75 10T 的側向勁度的遞減速度比較快,在4% 左右2支橋柱擁有相同的側向勁度,且遞減速度也相 近,這樣的情況一直維持至 6%,之後 NEW_H75_10T 因圍束效果差所以遞減速度較 NEW D65 10T 快,但在 8% 時 NEW_D65_10T 側向勁度也快速遞減,最後破壞 時2支橋柱擁有相同側向勁度。比較NEW D65SF 20T 與 NEW_H75SF_10, 如 圖 9(d) 所示, 情況和 NEW_ D65_10T 與 NEW_H75_10T 一 樣, 在 4% 之 前 NEW_ D65SF 20T 側向勁度較小,但遞減速度也較慢,至4% 時2支橋柱用有相同的側向勁度。即使在最後破壞的階 段 NEW_H75SF_10 也只比 NEW_D65SF_20T 略小。

鋼纖維效益換算等效橫向鋼筋量之 評估

由於鋼纖維能夠提供剪力強度以及圍束效果,但兩 者的界定並不明顯,在現今大部分的規範中對於橫向鋼筋 的間距規定也是剪力間距與圍束間距取小者配置即可,換 言之規範並無明確指出哪些橫向鋼筋承受剪力,哪些橫向 鋼筋用以圍束,而是取較小間距值當作設計。根據這樣的 想法,本研究使用位移韌性當作指標,將鋼纖維的效益分 為剪力強度與圍束效果,從兩者效益分別回推其等效的橫 向鋼筋量,再將換算所得的值與實驗結果比較,釐清以哪 個角度換算鋼纖維的效益可能較為合理。

以剪力換算等效橫向鋼筋量之評估

針對實心圓形橋柱,鋼筋提供之剪力強度可分為 箍筋及繫筋之貢獻,根據規範[2]其計算方法如下:

$$V_s = \frac{\pi}{2} \frac{A_h f_{yt} D}{s} + \frac{A_v f_{yt} D}{s}$$
(7)

其中, A_h 為圓形箍筋單根斷面積,(cm²)、 f_y 為剪力鋼筋降伏強度,(kgf/cm²)、D為圓柱圍束區域之直徑,(cm)、s為剪力鋼筋垂直間距,(cm)。

$$V_s = V_{sh} + V'_{sh} + V_{sc} \tag{8}$$

$$V_{sh} = \frac{\pi}{2} \frac{A_h f_{yl} D}{s} \tag{9}$$

$$Y'_{sh} = \frac{\pi}{2} \frac{A_h f_{yl} D'}{s} \tag{10}$$

$$V_{sc} = \frac{\sum A_h f_{yl} (1 - \alpha)}{4s} \tag{11}$$

其中,D為橋柱圍東區域外緣直徑,(cm)、D'為橋柱 圍東區域內緣直徑,(cm)、 f_{yc} 為繫筋降伏強度,(kgf/ cm²)、 ΣA_s 為每層繫筋總面積,(cm²)、 α 為開孔率,為 圍東區域內緣直徑除以圍東區域外緣直徑。

鋼纖維提供之剪力強度可參考林安理⁽⁴⁾建議方 法。本研究中由於橋柱所受的軸力比低,可用此公式 預估鋼纖維混凝土柱之剪力強度。其預測公式如下:

$$v_u = \left(0.15\sqrt{f_c'} + 70\rho \frac{d}{a}\right) F_{eff}$$
(12)

$$F_{eff} = 1 + \frac{F_{po}}{0.7\sqrt{f_c'}}$$
(13)

$$F_{po} = \left(\frac{L_f}{d_f}\right) V_f \tau_{eq} \tag{14}$$

其中, v_u 為鋼纖維混凝土梁剪力強度,(MPa)、 f'_c 為混 凝土抗壓強度,(MPa)、 ρ 代表撓曲鋼筋比,為主筋面 積 A_s 除以有效面積 $b_v d \cdot d$ 為有效深度,(mm)、a為 剪力跨度,(mm)、 F_{eff} 為纖維效益參數(Fiber Effective Factor)、 F_{no} 為纖維拉拔參數(Fiber Pull-Out Factor)。

F_{eff}值必須扣掉混凝土的貢獻,所以要將表 2(c)中 F_{eff}值扣掉1,剩餘的值就是鋼纖維所能提供的剪力強度。

將 NEW_D65SF_20T 的橫向鋼筋與鋼纖維的剪力 強度相加即可得到 V_{total},再用相同的橫向鋼筋配置換算 回等效的箍筋間距 s_{ea},計算方式如下:

$$V_{total} = \frac{\pi}{2} \frac{A_h f_{yl} D}{s_{eq}} + \frac{A_v f_{yl} D}{s_{eq}}$$
(15)

NEW_H75SF_10 並不是放大箍筋間距,而是拿掉繫筋,因此換算繫筋數量的計算過程中,等號兩邊的內

外箍筋的剪力強度都會抵消,因此直接計算鋼纖維的 剪力強度當成 V_{total} 並換算成等效的繫筋數量 n 即可, 計算方式如下:

$$V_{total} = n \frac{A_h f_{yt} (1 - \alpha) D}{4s}$$
(16)

表 12 所列為以剪力換算等效鋼筋量與位移韌性關係。 NEW_D65SF_20T 換算後可以得到比 NEW_D65_10T 更小的箍筋間距,而 NEW_H75SF_10 換算後可以得到 比 NEW_H75_10T 還要多跟的環向繫筋,根據這樣的 結果推論含鋼纖維的橋柱在反覆側推實驗的表現應該 會比不添加鋼纖維的橋柱來的好。但 NEW_D65_10T 及 NEW_H75_10T 之位移韌性比 NEW_D65SF_20T 及 NEW_H75SF_10 佳,顯然使用剪力強度換算鋼纖維的 貢獻並不恰當,因為鋼纖維的剪力強度並不會完全發 揮,反而造成明顯高估的現象。

表 12	以剪	力換算	等效鋼	筋量與個	位移韌性關係
------	----	-----	-----	------	--------

試體名稱	NEW_ D65_10T	NEW_ D65SF_20T	NEW_ H75_10T	NEW_ H75SF_10
V _{total} (kN)		1035		657
位移韌性	4.58	4.54	6.43	5.45
等效箍筋量	s = 10 cm	<i>s</i> = 7.6 cm	<i>n</i> = 12 肢	<i>n</i> = 18 肢
實驗用鋼筋量		s = 10 cm		<i>n</i> = 12 肢

以圍束換算等效橫向鋼筋量之評估

鋼纖維可提供混凝土開裂後裂縫的橋接,保護層 較一般混凝土不易剝落,因此能夠提供核心混凝土較 佳的圍束。對於鋼纖維在圍束效果的取代採用韌性比 的概念,其換算方式為分別計算橫向鋼筋的圍束效果 以及鋼纖維的圍束效果,再藉由韌性比將兩種韌性效 益疊加,最後再換算成鋼筋混凝土柱的等效橫向鋼筋。

鋼筋混凝土柱的圍束效果主要由橫向鋼筋提供, 而鋼纖維混凝土柱的圍束效果則主要由鋼纖維提供。 Skeikh 及 Uzumeri^[8]提出了鋼筋混凝土柱的有效圍束係 數模型,用以描述鋼筋混凝土柱的韌性,而隨著此參 數提高則柱體的韌性也跟著增加,因此定義鋼筋混凝 土柱的韌性參數如下:

$$TI_{t} = \frac{k_{e}\rho_{s}f_{yt}}{f_{c}'} \tag{17}$$

其中, k_e 為有效圍束折減因子、 r_s 為箍筋比、 f_y 為橫向 鋼筋降伏強度(MPa)、 f'_c 混凝土抗壓強度(MPa)。而 k_e 定義為有效圍束面積 A_e 與核心混凝土面積 A_{cc} 之比 值,如下式所示:

$$k_e = \frac{A_e}{A_{cc}} \tag{18}$$

$$A_{e} = \frac{\pi}{4} \left(d_{s} - \frac{s'}{2} \right)^{2}$$
(19)

$$A_{cc} = A_c \left(1 - \rho_{cc} \right) \tag{20}$$

其中,A_c為外圍箍筋中心線以內之面積、r_{cc}為縱向鋼筋面積與核心混凝土之比值、s'為橫向箍筋間的淨間距、d_s為橫向箍筋算至中心線的直徑長度。

Fanella 和 Naamman^[9]提出的 圍 束 指 數 (Reinforcing Index, RI),即鋼纖維體積取代率(V_f)與 長細比(α_f)之乘積,可以看出材料韌性會隨著圍束指 數提高而成長。Foster^[10]提出鋼纖維混凝土的圍束力與 鋼纖維與漿體間的握裹強度有正比關係,進而推導出鋼 纖維與漿體之間的等效握裹強度(τ_{eq}),以此表示不同 形式鋼纖維的影響參數。實驗結果顯示,材料韌性與材 料強度呈現反比的現象。綜合前述各項參數,定義鋼纖 維混凝土韌性相關之無因次參數如下式所示:

$$TI_f = \frac{V_f \alpha_f \tau_{eq}}{f'_c} \tag{21}$$

鋼筋混凝土柱中如加入鋼纖維會有增加韌性的效益產 生,意即加入鋼纖維可以使原本的鋼筋混凝土柱有更好 的韌性表現。但鋼纖維的增韌效益並不是線性的關係, 當箍筋間距較小時,鋼纖維能發揮的效益就較小;當箍 筋間距逐漸放大時,鋼纖維發揮的效益逐漸加大,但也 有其上限值。曾笠維¹¹¹根據迴歸結果將鋼纖維鋼筋混 凝土柱的 TR 值以及鋼纖維增韌係數 X_f定為:

$$TR = 0.48TI_t^{0.18} + \chi_f TI_f$$
(22)

$$\chi_f = \begin{cases} 0.025 \frac{s}{d} - 0.0025 \ge 0 & \frac{s}{d} \le 0.5 \\ 0.01 & 0.5 < \frac{s}{d} \le 1 \end{cases}$$
(23)

根據公式將需要的參數及韌性比計算結果列於表 13。 NEW_D65_10T與 NEW_H75_10T因為本身圍束良好所 以 TI, 值本來就比較高, 而 NEW_D65SF_20T與 NEW_ H75SF_10則因為原本圍束差而 TI,值比較小。NEW_ D65SF_20T 的鋼纖維的增韌係數為 0.0058,較 NEW_ H75SF_10 的 0.0011 大,原因是鋼纖維的增韌效益和箍 筋本身的間距有很大的關係,當箍筋的間距愈大時, 鋼纖維所能提供的效益就愈大。

將鋼纖維的增韌效益計入整體的韌性比之後, 可以發現NEW_D65_10T的韌性比只比NEW_ D65SF_20T略大一些,差值約為0.1,代表藉由鋼纖維 的添加能補足大部分的圍束需求,且可以預期NEW_ D65SF_20T的表現會比NEW_D65_10T略差一些。 而NEW_H75_10T和NEW_H75SF_10的韌性比則差 距較大,差值約為0.5,主要原因為增韌係數太小, 造成鋼纖維的韌性參數貢獻小,所以可以預期NEW_ H75SF_10的表現會比NEW_H75_10T差。

表 14 所示為以韌性比回推的等效鋼筋混凝土橫向 鋼筋量。基本上,位移韌性和等效橫向鋼筋量呈現正 相關。NEW_D65SF_20T 的等效箍筋間距為 12 公分, 比 NEW_D65_10T 略大 2 公分,所以表現也略差。 NEW_H75SF_10 換算所得的等效環向繫筋量只有 2.4 根,NEW_H75_10T 為 12 根,這樣的差異使 NEW_ H75SF_10 的位移韌性值明顯較小。綜合前述討論,以 圍束的觀點能將鋼纖維的效益較合理的換算。原因為 橋柱是撓曲破壞,當由圍束不足造成鋼筋的挫曲以及 拉斷,因此橋柱實驗裡圍束可以完全的發揮,也使得 鋼纖維的效益以圍束的觀點來換算會很合理。

試體名稱		NEW_	NEW_	NEW_	NEW_
		D65_10T	D65SF_20T	H75_10T	H75SF_10
S	cm	10	20	10	10
s'	cm	8.73	18.73	8.73	8.73
d	cm	59.96	59.96	69.96	69.96
d_s	cm	58.73	58.73	68.73	68.73
r_{cc}		0.0299	0.0299	0.0256	0.0256
k_{e}		0.883	0.728	0.900	0.900
ρ_s	%	0.9791	0.4895	1.76	1.07
f_{yt}	MPa	420	420	420	420
f'_c	MPa	70	70	70	70
TI_t		5.189	2.139	9.505	5.779
$\chi_{_f}$		-	0.00584	-	0.00107
TI_{f}		-	14.051	-	14.051
TR		0.646	0.632	0.720	0.673

表13 韌性比參數及計算結果

表 14 以圍束換算等效鋼筋量與位移韌性關係

試體名稱	NEW_ D65_10T	NEW_ D65SF_20T	NEW_ H75_10T	NEW_ H75SF_10
位移韌性	4.58	4.54	6.43	5.45
等效箍筋间距	10 cm	12 cm	-	-
等效繫筋肢數	-	-	12	2.4

分析與實驗結果比較

非線性靜力側推分析

本研究採用 TEASPA 程式^[12]進行側推分析。 TEASPA 為國家地震工程研究中心所提出的一套耐震 評估程式,主要用於校舍結構之耐震評估作業。本研 究採用其中的輔助分析程式 COLPH,可設定彎矩及 剪力非線性鉸性質,如圖 10 與圖 11,再將結果放入 ETABS 模型中進行側推分析以獲得橋柱之側推曲線, 最後可藉由比較實驗值與側推值評估此套方法的準確 性及適用性。

計算撓曲強度時假設高強度混凝土可適用 ACI 318-11^[7] 之等值矩形應力塊方法,高強度鋼筋則假設為 完全彈塑性模式,故材料參數僅使用*f'_c、f_y*與*f_{yt}*,並未 定義材料應力應變曲線。此外,有關剪力強度開始下 降之位移 Δ_s與軸力喪失之位移 Δ_a,分別採用手冊所建 議之公式予以評估,如下所示:

$$\frac{\Delta_s}{H} = \frac{3}{100} + 4\rho'' - \frac{1}{40}\frac{v_m}{\sqrt{f_c'}} - \frac{1}{40}\frac{P}{A_g f_c'} \ge \frac{1}{100}$$
(24)

$$\frac{\Delta_a}{H} = \frac{4}{100} \frac{1 + (\tan\theta)^2}{\tan\theta + P \frac{s}{A_{st}f_{st}d_c}\tan\theta}$$
(25)

其中, ρ "為橫向鋼筋總面積 A_{ss} 與箍筋圍束區 bs之面 積比,b為柱寬、s為箍筋間距; v_m 為最大標稱剪應力 V_m/bd , V_m 為標稱彎矩強度 M_n 與柱高H之比值、d為 有效深度。 d_c 為核心混凝土由箍筋心到心之距離; $\theta(\theta$ = $tan^{-1}(H/h)$)為最大裂縫角度;h為沿剪力方向之柱 深, θ 須小於 65 度。

COLPH 在分析時假設初始勁度為 0.7*E*_c*I*_s,從圖 12 可知不管是普通材料橋柱或是高強度材料橋柱模擬 值和實驗值都非常相近,代表可以準確的模擬初始勁

圖 12 TEASPA 分析值與實驗遲滯迴圈比較

度,不會有預測的勁度過小而造成誤判週期過大的情形。表 15 所示為最大側力強度之比較,預測結果與實驗值之比值約介於 1.05 ~ 1.16 之間,其差異主要與鋼筋的應變硬化行為有關。由於 COLPH 假設鋼筋為完全彈塑性,但實際上鋼筋之極限強度與降伏強度比約介於 1.05 ~ 1.25,故由 COLPH 所評估之極限側力結果較為保守尚屬合理。

針對破壞點的預測整體而言偏向保守。RC_D76_7T 破壞點的預測較為準確,正方向的預測較實驗值早了約 1%,負方向則與實驗值相同。對於NEW_D65_10T、 NEW_D65SF_20T的預測極為保守,比實驗值都早2% 以上就破壞。NEW_H75_10T、NEW_H75SF_10的預測 似乎較為準確。推測可能原因為COLPH主要針對撓剪 破壞試體,因此對於撓曲破壞模式之橋柱會趨於保守。

表 15 TEASPA 分析最大側力 (值與实验值比较
----------------------	---------

試體名稱		RC_D76_7T	NEW_D65_10T	NEW_D65SF_20T	NEW_H75_10T	NEW_H75SF_10
實驗值	kN	537.5	522.9	526.9	509.1	560.7
分析值	kN	476.2	468.8	468.8	484.9	484.9
實驗值/分析值	%	1.13	1.12	1.12	1.05	1.16

反覆載重分析

本研究採用 OpenSees^[13] 模擬橋柱反覆側推的行 為。未圍束混凝土模擬保護層的行為,對於不含鋼纖維 混凝土使用的模型為 Concrete04。對於含鋼纖的未圍束 混凝土根據阮德俊^[14] 建議使用 Concrete04 和 Concrete01 進行模擬,並使用 Parallel Material 將兩個混凝土模型並 聯起來。圍束混凝土模型都使用 Concrete04 模型。鋼筋 模型採用 Hysteretic Material Model,此模型可以模擬雙 線性的遲滯模型。此外,根據文獻^[15] 於柱底建立剪力 與滑移彈簧(圖 13),以模擬橋柱的反覆側推行為。

分析模型如圖 14 所示,圖 15 所示為各橋柱模擬 結果。所有橋柱在初始勁度與最大側力的模擬效果都 很準確,尤其高強度(鋼纖維)鋼筋混凝土橋柱的模 擬值和實驗值幾乎相同,可以反映試體反覆側推實驗 初期的行為,且此現象代表柱底以滑移彈簧調整橋柱 的勁度有很不錯的結果。針對 NEW_D65SF_20T 與 NEW_H75SF_10,含有鋼纖維的橋柱在模擬上以圍束 換算等效橫向鋼筋量的方法,將鋼纖維的效益轉為箍 筋間距以及繫筋數量,再代入 OpenSees 中進行分析。

對於極限側力的模擬上也有相當高的準確性,可 參考表 16 的極限側力值比較,所有橋柱實驗值和分析 值的誤差都落在 10% 之內,且所有橋柱在每個層間變 位角的預測值都和實驗值接近,只有 NEW_H75_10T 在正方向略為微高估。

關於開始破壞點的預測,不管是普通強度鋼筋 混凝土橋柱或是高強度(鋼纖維)鋼筋混凝土橋柱都 有很不錯的模擬結果,與實驗值非常貼近,因此能準 確預測橋柱試體的破壞。整體迴圈的模擬上飽滿程度 都會略小於實驗值,但與實驗值差距不大。建議可以 調整鋼筋模型的參數以進一步模擬試體 Pinching 的行 為,讓整體遲滯迴圈有更相近的模擬。

結論與建議

採用高強度混凝土與高強度鋼筋之圓形橋柱,在 低軸力比條件下,當橫向鋼筋配置符合公路橋梁耐震 規範之規定,根據 NEW_D65_10T 與 NEW_H75_10T 實驗結果顯示,在層間變位角較普通強度材料之橋柱 RC_D76_7T 有更佳的表現。因此橋柱採用高強度材料 加上適當圍束可以取代普通強度材料的橋柱,並且能 節省材料用量以及減輕構件重量。

以鋼纖維取代部分的橫向鋼筋,無論放大箍筋間 距或不放置繫筋均是可行的。實驗結果顯示,NEW_ D65SF_20T及 NEW_H75SF_10於添加1.5% 體積比之 鋼纖維後,因鋼纖維所提供之圍束效果,使原本橫向 鋼筋配置不符合規範之位移韌性獲得改善,最終結果 與符合規範之橋柱有接近的表現。

試體名稱		RC_D76_7T	NEW_D65_10T	NEW_D65SF_20T	NEW_H75_10T	NEW_H75SF_10
實驗值	kN	537.5	522.9	526.9	509.1	560.7
分析值	kN	510.7	530.1	545.1	563.5	557.5
誤差	%	-5.0	1.4	3.5	10.7	-0.57

圖 15 OpenSees 分析值與實驗遲滯迴圈比較

應用高強度材料之橋柱試體(包含加入鋼纖維的 橋柱),在強度表現上與現行規範所設計之橋柱相似, 且位移韌性上均可達到公路橋梁耐震設計規範之規定 (位移韌性≥3),表示實驗的橋柱都有良好的強度與變 形能力,可推廣至實際橋梁工程。

TEASPA 程式可用於評估高強度混凝土橋柱之單 向側推行為,有效掌握初始度與最大側力強度,惟對 於破壞點之位移預測較為保守。

OpenSees 程式可用於評估高強度混凝土橋柱之 反覆側推行為,無論是初始勁度、最大側力或破壞點 等,預測上都有不錯的成果,因此很適合模擬橋柱的 韌性行為。

雖然添加鋼纖維的混凝土為 SCC,但加入鋼纖維 後會產生流動性變差以及氣泡問題,因此對於鋼纖維 混凝土構件以及抗壓圓柱試體都必須震動以及搗實, 避免微小孔洞造成強度的折減。

橋柱中換算鋼纖維的等效橫向鋼筋量應以「圍 束」的角度進行代換,所得的數值會較為合理且準確。

誌謝

本文得以順利完成, 感謝國家實驗研究院國家 地震工程研究中心支持實驗經費, 副技術師周志雄先 生協助實驗設備操作, 技術員陳安志、劉天佑、梁立 勳、徐振豪先生等協助實驗試體安裝, 以及佐理研究 員江奇融協助實驗準備及記錄, 在此謹申謝忱。

參考文獻

- 黃震興、謝有明、鄭橙標、周志雄,「RC 橋柱之鋼板包覆耐震補 強」,國家地震工程研究中心,1999。
- 2. 交通部,「公路橋梁耐震設計規範」, 2009。
- 蔡益超、賴彥魁,「中空鋼筋混凝土橋柱韌性、剪力強度與補強之 理論分析(III)」,國家地震工程研究中心,2000。
- 林安理,「中剪跨鋼纖維混凝土梁剪力強度預測研究」,碩士論 文,國立台灣大學土木工程學研究所,台北,2013。
- FEMA, "Prestandard and Commentary for the Seismic Rehabilitation of Buildings," FEMA 356, Washington D.C., USA, 2000.
- Tomosawa, N., and Noguchi, T., "Relationship Between Compressive Strength and Modulus of Elasticity of High-Strength Concrete," Dept. of Architecture, Fac. Of Engineering, Univ. of Tokyo, 1993.
- ACI Committee, 318, "Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary," American Concrete Institute, 2011.
- Sheikh, S. A., and Uzumeri, S.M., "Strength and ductility of tied concrete columns," J. Struct. Div., A.S.C.E., 106(5), 1079-1102, 1980.
- Fanella, David A., and Naaman, Antoine E., "Stress-Strain Properties of Fiber Reinforced Mortar in Compression," J. Am. Concr. Inst., 82(4), 475-483, 1985.
- Foster, S. J., Liu, J., and Sheikh, S. A., "Cover Spalling in HSC Columns Loaded in Concentric Compression," Journal of Structural Engineering, ASCE, Vol. 124, No. 12, pp. 1431-1437, 1998.
- 11. 曾笠維,「以鋼纖維取代橫向箍筋於 New RC 柱之應用評估」,碩 士論文,國立台灣大學土木工程學研究所,台北,2014。
- 12. 蕭輔沛、鍾立來、葉勇凱、簡文郁、沈文成、邱聰智、周德光、 趙宜峰、翁樸文、楊耀昇、褚有倫、涂耀賢、柴駿甫、黃世建, 「校舍結構耐震評估與補強技術手冊第三版」,國家地震工程研 究中心,報告編號:NCREE-13-023,台北,2013。
- 13. Mazzoni, S., McKenna, F., Scott, M. H., and Fenves, G. L., "OpenSees Command Language Manual," 2007.
- 14. 阮德俊,「高強度鋼纖維鋼筋混凝土柱的軸壓及反覆側推行為模擬研究」,碩士論文,國立台灣大學土木工程學研究所,台北,2013。
- 15. Kuang-Yen Liu, Witarto and Kuo-Chun Chang, "Composed analytical models for seismic assessment of reinforced concrete bridge columns," Earthquake Engineering & Structural Dynamics, Volume 44, Issue 2, pages 265–281, February 2015.

35