混凝土老劣化對 酮節混氮之層쬙咸圓型能之影響

宋裕祺/國立台北科技大學土木工程系教授、國家地震工程研究中心組長 蘇進國/台灣世曦工程顧問股份有限公司正工程師 許家銓/國家地震工程研究中心助理研究員 賴明俊/國家地震工程研究中心助理研究員 陳俊仲/國家地震工程研究中心副研究員 洪曉慧/國家地震工程研究中心副研究員

鋼筋混凝土(Reinforced concrete, RC)為工程 中常見之材料,應用相當廣泛,諸如住宅、道路、橋 梁、隧道、港灣、碼頭、水庫及核能電廠等工程,皆 不難見到 RC 材料的應用。然而,傳統的結構設計多偏 重工程材料的力學特性,卻疏忽所處環境對結構物耐 久性之影響,台灣地區屬亞熱帶海島型氣候,終年潮 濕,尤其在部份人口密集的都會地區或工業區,汽機 車排放超量的二氧化碳,更易加速混凝土老劣化的形

建立橋梁易損性曲線之時變特性,供最佳化管理參考。

成,造成混凝土保護層剝落、鋼筋銹脹腐壞等負面影響,更進一步喪失結構的使用機能與安全性。

目前國內外相關研究機構對於混凝土老劣化議題 探討甚多,但大部份都是針對材料部份進行分析與討 論,混凝土老劣化對整體結構安全之影響情況及後續 補強維護策略的探討相對較為缺乏。因此,本文將以 過去學者在混凝土中性化及鹽害的相關研究成果作為 基礎,並進一步探討此兩種劣化因子對鋼筋混凝土構 件的力學行為變化,最後,以一實際鋼筋混凝土橋梁 為例,逐年分析材料受中性化或鹽害後時變效應下之 橋墩塑性鉸性質,並藉由非線性靜態側推分析與改良 式容量震譜法,分別獲得橋梁結構容量曲線一時間與 各種不同損壞等級對應之地表加速度一時間之關係, 進而建立橋梁易損性曲線之時變特性。據此,橋梁各 種不同損壞程度之機率時變關係及其對應之耐震維修 或補強等生命週期成本最佳化分析即可完成,所得成 果可供為橋梁最佳化管理決策制定之參考。

混凝土中性化深度的預測模式

混凝土中性化主要是環境中的 CO₂ 侵入擴散到混 凝土內部,並與混凝土中的可碳化物質發生化學反應 的過程。根據 Fick 第一擴散定律之假設條件:(1) 混 凝土中 CO₂ 濃度呈穩態狀況且為直線分佈;(2) 混凝土 表面 CO₂ 濃度為定值,未中性化區域 CO₂ 濃度為零; (3) 單位體積混凝土中性化所需吸收 CO₂ 濃度的量為 定值;(4) 中性化開始時間為混凝土結構物完工時間。 混凝土碳化深度可表示為中性化速度係數 K 與時間 t (年) 之關係如下式:

$$D_C = K\sqrt{t}$$

(1)

其中,中性化速度係數 K 值跟環境因素具有高相 關性,不同地區 K 值差異甚大,為求得符合台灣現地 之中性化速度係數,本研究根據國內二十二座鋼筋混 凝土橋梁之中性化檢測資料(圖1),採用非線性迴歸 分析方法,求得各橋梁中性化速度係數之平均值與標 準偏差可以綜合彙整如下式,預測模式與實測值之關 係如圖 2 所示 [1]。

 $K_{\mu} = 3.97 (\text{mm/year}^{0.5})$ (2) $\sigma_{\mu} = 1.31 (\text{mm/year}^{0.5})$ (3)

中性化混凝土中的鋼筋銹蝕量估計

鋼筋瞬間銹蝕速率的量測

一般而言,混凝土中性化過程可依據鋼筋銹蝕發 展進程區分為潛伏期、進展期、加速期及劣化期等四 大階段(如圖3)[2]。依據所蒐集之橋梁檢測資料,採 用非線性迴歸法可得到進展期之鋼筋銹蝕速率預測模 式如下:

$$R_{corr}^{prop}(t) = 1.022 \times 10^{-3} \exp^{0.04 \times T_{emp}} \left(\frac{RH - 45}{100}\right)^{\frac{2}{3}} c^{-1.36} t^{1.83} \quad (\text{mm/yr})$$
(4)

其中, t(yr) 為橋梁之使用年期、RH(%) 為年平 均溼度、c(mm) 為保護層厚度、Temp(°C) 為年平均溫 度。加速期之銹蝕速率,參照牛荻濤 [2] 結合電化學原

理與實際工程銹蝕速度分析結果,加速期之鋼筋銹蝕 速率 $R_{corr}^{acce}(t)$ 可取為進展期者之 2.5 倍,即 $R_{corr}^{acce}(t) = 2.5$ $R_{corr}^{prop}(t)$;劣化期之速率則假設為與加速期相同, $R_{corr}^{dete}(t) = R_{corr}^{acce}(t)$ 。進展期與加速期之分界點,定義為混凝 土因鋼筋銹蝕引致體積膨脹造成混凝土保護層發生開 裂之時間 t_{cr} 。根據工研院材料銹蝕電流密度評估表 [3] 以及按 Faraday 定律計算之鋼筋瞬時銹蝕速度,可估 算出混凝土保護層開裂時之鋼筋銹蝕速率約為 $R_{corr}^{crack} = 5.805 \times 10^{-3}$ (mm/yr) [1]。因此,將 $R_{corr}^{prop}(t)$ 與 R_{corr}^{crack} 聯立 求解即可獲致 t_{cr} 。

混凝土中性化殘量與鋼筋開始銹蝕時間之 推算

混凝土中鋼筋開始銹蝕時間常被定義為中性化深 度到達鋼筋表面所需時間,然而,鋼筋銹蝕實際上是 取決於鋼筋周圍混凝土的 pH 值。大量工程調查和試驗 結果顯示,酚酞試劑只能測出混凝土完全中性化區的 長度及其界限,而不能測出碳化的程度。

日本學者岸谷孝一提出了「中性化殘量」的概念 [4],定義中性化殘量為在鋼筋開始銹蝕時,用酚酞試 劑測得的中性化前緣至鋼筋表面的距離(如圖4)。一 旦中性化殘量的計算模式建構完成後,即可推求鋼筋 開始銹蝕條件。宋裕祺與王傳輝[1] 簡化徐善華等[5] 建議之數學模式,依據所蒐集之橋梁檢測資料,經由 非線性迴歸得到的中性化殘量經驗公式如下:

圖 4 部分中性化區域示意圖

$$D_0 = 5.9063(-RH^2 + 1.5RH - 0.45)(c-5)(\ln f_c' - 2.3)$$
(5)

式中, D_0 為中性化殘量(mm)、RH為環境年平均 濕度(%)、c為混凝土保護層厚度(mm)、當c > 50mm時,取c = 50 mm; f_c 為混凝土抗壓強度(MPa)。

根據一般大氣環境鋼筋開始銹蝕的條件,可以得 到鋼筋開始銹蝕時間 t,如下:

$$t_i = \left(\frac{c - D_0}{K_{measured}}\right)^2 \tag{6}$$

若中性化係數無實測結果,可選用式(2)和(3), 再將式(5)同代入上式,即可計算得t_i。

鹽害造成的鋼筋銹蝕量估計

根據國家地震工程研究中的研究報告 [6],鋼筋受 到鹽害後的銹蝕情況可分成四個階段(圖 5),分別為 潛伏期、進展期、加速度期、及加速期後期。由圖 5 可知,潛伏期與進展期之時間分界為 t_{corr},當構件使用 時間超過 t_{corr},鋼筋即開使產生銹蝕,當使用時間超過 t_{crack},則鋼筋銹蝕情況發展至加速度後期,此時鋼筋銹 蝕量會有明顯加劇現像,而造成構件強度的不足。茲 將各階段之鋼筋銹蝕量計算步驟整理如下:

步驟一、計算鋼筋開始銹蝕時間

根據 Fick's 第二擴散定理可知,在距離混凝土表面 x 處,時間 t 時之氯鹽量可由下式計算 [7]:

$$C(x,t) = C_0 \left(1 - erf\left(\frac{x}{2\sqrt{D_2 t}}\right) \right)$$
(7)

 $\log D_2 = -6.77(w/c)^2 + 10.1(w/c) - 3.14$ (8)

其中, C_0 為混凝土表面附著氯鹽量可參考 NCREE-12-018 [6]研究成果,依據飛來鹽量計算求 得;氯離子擴散係數 D_2 則可透過混凝土水灰比進行 計算如式(8)。參考CNS規定,當鋼銹蝕進入進展期 時,其鋼筋表面氯鹽量為0.3,即C(鋼筋表面, t_{corr}) = 0.3,依據上述已知條件,代入式(7)及式(8),即可 求得鋼筋開始銹蝕時間 t_{corr} 。

步驟二、計算進展期至加速度期之鋼筋銹 蝕重量減少率

在鋼筋銹蝕情況進入進展期與加速度期時,其平 均每年鋼筋銹蝕之重量減少率 V_{corr}(t)(%/year)可表示 如下式 [7]:

$$V_{corr}(t) = \left(\frac{1}{c}\right)^{0.5} \times \left(0.578 \times Cl(t) + 0.023(w/c) - 1.52\right)$$
(9)

其中, c 為保護層厚度(mm)、Cl 為鋼筋表面之氯鹽量 (kg/m3)、w/c 為混凝土水灰比 (%)。

步驟三、計算加速度期與加速度後期之分 界時間 t_{crack}

當混凝土保護層開始開裂時(t_{crack}),平均每年鋼筋 銹蝕之重量減少率 V_{corr}(t) = Vcr = 3.28% [7],如此可將 此數據代入式 (9)即可求得對應之 t_{crack}。

步驟四、計算加速度後期之鋼筋銹蝕重量 減少率

當鋼筋銹蝕清況進入加速度後期時,混凝土開始 產生剝離,其鋼筋銹蝕重量減少率會有加劇的現象, 本文參考邱建國教授[7]依據台灣本土氣候條件所迴歸 之裸鋼銹蝕速率公式作為此階段之鋼筋銹蝕速率 V_{crack} (mm/year)之計算,如式(10)所示。

 $V_{crack} = \begin{cases} e^{-0.0809T} \times (RH - 0.45)^{0.2288} \times d^{-0.0374}, \text{ for northern Taiwan} \\ e^{-0.0513T} \times (RH - 0.45)^{0.938} \times d^{-0.0522}, \text{ for middle Taiwan} \\ e^{-0.0169T} \times (RH - 0.45)^{1.765} \times d^{-0.0601}, \text{ for southern Taiwan} \\ e^{-0.0934T} \times (RH - 0.45)^{0.28} \times d^{-0.0875}, \text{ for eastern Taiwan} \end{cases}$ (10)

其中,*RH*為平均相對濕度(%),*d*為海岸線距離 (km)、*T*為平均溫度(°C)。

混凝土中性化及鹽害對鋼筋混凝土 構材力學之影響

中性化對混凝土之強度與有效斷面變化

相關研究顯示,混凝土中性化後,混凝土有呈現 更為緻密的現象,因此有些學者認為混凝土抗壓強度 會有增加的趨勢,然有些學者則認為中性化會使混凝 土材質變差,抗壓強度恐因而降減 [8]。本文假設中性 化混凝土之抗壓強度與未中性化前相同,不考量其增 減效應,惟其中性化區域不列入混凝土有效斷面積範 圍內,其計算方式如下(圖6):

$$\begin{cases} B_e(t) = B - 2 \times D_c(t) &, t \ge t_{cr} \text{ and } D_c(t) \ge c \\ H_e(t) = H - 2 \times D_c(t) &, t \ge t_{cr} \text{ and } D_c(t) \ge c \end{cases}$$
(11)

式中, $B_e(t)$ 為混凝土斷面有效寬度(mm), $H_e(t)$ 為混凝土斷面有效寬度(mm),B與H分別為混凝土未劣 化前之斷面寬度(mm)與深度(mm), $D_e(t)$ 為中性化 深度(mm),c為混凝土保護層厚度(mm)。

銹蝕鋼筋之降伏強度

鋼筋銹蝕不僅造成鋼筋斷面積損失,還會直接影 響結構物的力學性能。假設鋼筋混凝土產生中性化或 受鹽害侵蝕而導致鋼筋之銹蝕為一均匀分佈,此時, 鋼筋失重率與鋼筋的斷面積損失率近乎等同,而且鋼 筋極限拉應力的降低量與鋼筋的斷面積損失率大約呈 現正比關係。因此,本文採用牛荻濤[2]之建議公式 如下:

$$\eta(t) = \left[1 - \frac{A_{s,left}(t)}{A_{s,total}}\right] \times 100\%$$
(12)

$$f_{y,corr}(t) = [1 - 1.077\eta(t)] f_y, \ t \ge t_i$$
(13)

式中, $f_{y,corr}(t)$ 為銹蝕鋼筋之降伏強度(MPa或kg/ cm²), f_{y} 為鋼筋之初始降伏強度(MPa或kg/cm²), $\eta(t)$ 為銹蝕鋼筋之斷面積損失率(%); $A_{s,total}(t) 與 A_{s,left}$ 分別為鋼筋銹蝕前、後之斷面積(mm²), t_{i} 為鋼筋開 始銹蝕之時間(yr)。

橋梁易損性曲線時變特性之建立

藉由非線性靜力推覆分析與改良式容量震譜法, 結構物之耐震能力可以圖 7 所示之最大地表加速度 (PGA)與結構位移之雙線性關係表示之 [9]。

本文採用以下四種結構性能等級作為地震損壞評 估之依據:(1)結構性能一(PO₁):當結構物之位移達 到降伏位移之80%時。(2)結構性能二(PO₂):當結構 物之位移達到降伏位移時。(3)結構性能三(PO₃):當 結構物之位移達到韌性容量之2/3時。(4)結構性能四 (PO₄):當結構物之位移達到韌性容量時。

假定易損性關係遵循常態分佈,則當地震損壞等 於或大於結構性能 i (PO_i) 之累積機率可表為:

(14)

$$P_i(\geq PO_i) = \Phi\left(\frac{X - \mu_{X_i}}{\sigma_{X_i}}\right)$$

其中 Φ 為標準常態累積分佈函數 (standard normal cumulative distribution function); μ_{Xi} 與 σ_{Xi} 分別為第 i 個損壞等級 R_i (以 X 表為 PGA 之變數)之平均值與標準偏差。因此,如圖 8 所示之五種損壞等級 : (1) 無損壞 R_1 ; (2) 輕微損壞 R_2 ; (3) 中度損壞 R_3 ; (4) 嚴重損壞 R_4 與 (5) 完全損壞 R_5 所對應之發生機率 $P_r(R_i)$ 可表示為:

$$\frac{P_r(R_1) = 1 - P_1}{P_r(R_i)} = P_{i-1} - P_i, i = 2 \sim 4$$
(15)
$$\frac{P_r(R_5) = P_4}{P_r(R_5)} = P_4$$

依據式(15)即可建立各時間點之橋梁易損性曲線,其時變特性便可因此據以掌握。若各損壞等級所 需之橋梁耐震維修或補強直接費用以 *Cost_R_i(t)*,(*i*=1~ 5)表示之,則在某一特定之地震需求(以對應之 PGA 表示)下,整體橋梁耐震維修或補強之直接費用可以 下式表示:

$$TOTAL_DIRECT_COST(t) = \sum_{i=1}^{5} COST_R_i(t) \times P_r(R_i)$$
(16)

當損壞程度達到完全損壞 R₅時,其所需耐震維修 或補強之經費 COST_R₅(t) 即為橋梁重新建造之費用。 本文參酌李剛和程耿東等人研究結果 [10],假設各種 不同損壞程度所需耐震維修或補強之經費關係如表 1 所示,據此,即可依據各不同時期之 COST_R₅(t) 求得 各種不同損壞程度所需耐震維修或補強之經費。至於 COST_R₅(t) 則以完工階段的費用再逐年依複利計算如 下 [11]:

 $COST_R_5(t) = COST_R_5(t=0) \times (1+r)^t$ (17)

式中r為利率,可依實際銀行利率計算,本案例取為常值1.7%。

表1 不同損壞程度所需維修補強經費與橋梁新建費用之百分比

不同損壞程 度所需維修 補強之經費	$\begin{array}{c} \text{COST}_{-} \\ R_1(t) \end{array}$	$\begin{array}{c} \text{COST}_{-} \\ R_2(t) \end{array}$	$\begin{array}{c} \text{COST}_{-}\\ R_{3}(t) \end{array}$	$\begin{array}{c} \text{COST}_{-} \\ R_4(t) \end{array}$	$\begin{array}{c} \text{COST}_{-}\\ R_5(t) \end{array}$
橋梁新建費 用之百分比	0%	2%	10%	70%	100%

案例分析與探討

橋梁結構基本資料

本研究根據交通部公路總局(前台灣省政府交通 處公路局)之橋梁工程標準圖[12],選擇一簡支型式橋 梁作為案例分析。橋梁跨度40m、橋面淨寬12m;橋 面版厚度20cm,上舖5cm瀝青混凝土。橋墩直徑2.2 m,高度(含帽梁)10公尺,採用72根10號主筋(72-D32)、5號箍筋間距10cm(D16@10cm),保護層6 cm。混凝土抗壓強度為27.47 MPa(280 kg/cm²)、主 筋與箍筋強度分別為412 MPa(4200 kg/cm²)與274.7 MPa(2800 kg/cm²)。上部結構為簡支型式之預力I型 梁;下部結構為單柱式橋墩,並假設於柱底固接。上 部結構自重 8545.6 kN(872 tonf),外加靜載重9.8 kN/ m(1 tonf/m)。橋梁分析模型如圖9所示,支承配置一 側為鉸支承(左端),另一側為滾支承。 本文假設橋梁使用壽命為 60 年、橋址位置之年平 均溫度為 23.2°C、相對濕度為 79.7% 及擴散係數 D_2 為 3.04 cm²/year,根據前述之方法分別計算橋柱混凝土中 性化後造成鋼筋開始銹蝕時間 $t_i = 28.95$ (year),混凝土 開始剝落時間 $t_{cr} = 47.96$ (year);另外,也可根據第四節 計算鹽害造成鋼筋開始銹蝕時間 $t_{corr} = 129$ (year),由結 果可知,此案例橋梁劣化原因以混凝土中性化為主。

圖 9 橋梁分析模型

橋梁耐震能力時變曲線及各性能等級損壞 機率之建立

因此案例之劣化主要受混凝土中性化控制,因 此,根據前述中性化理論,計算橋柱受混凝土中性後 之鋼筋面積與時間變化曲線圖 10 所示,並不同時間點 所造成鋼筋及混凝土斷面折損之結果與鋼筋強度折減 之結果輸入 SERCB 程式 [13] 建立不同時間點之橋柱彎 矩塑鉸性質,並將塑性鉸設定至 SAP2000 結構分析軟 體中進行非線性靜力側推分析,求得不同時間點之容 量曲線,並建立結構容量-時間之關係圖(圖 11),由 分析結果可知,在第0年至第30年間中性化過程緩慢 增加,鋼筋銹蝕現象並不明顯,當隨時間增長,橋柱 所能抵抗之基底剪力亦隨之下降,尤其在40年過後下 降幅度更為明顯。

接著,可進一步根據各種結構性能 PO_i, i = 1~4建 立所對應之最大地表加速度與時間關係圖(圖12)。圖中 清楚顯示各種結構性能對應之最大地表加速度隨時間增 加而呈現衰退之特性。圖13為橋梁使用時間達t = 60年 之機率密度函數與橋梁易損性曲線,由此分析結果,可 輕易的求得在此服務年限時,橋梁承受 PGA = 0~0.8 g

地震力作用下,其各種損壞等級之機率,以作為後續橋 梁耐震維修補強之生命週期成本評估之參考。

橋梁耐震維修補強之生命週期成本評估

依據式(16,17)可得 PGA 在 0.18 g、0.23 g、0.28 g和 0.33 g時的直接費用逐年變化曲線(如圖 14),由 圖中可知不同地震引致不同損壞程度所需橋梁維修或 補強直接費用的變化趨勢,以耐震需求為 PGA = 0.18 g 時為例,圖中顯示在時間為 40 年時,其所需直接費用 將呈大幅上揚之現象,因此,若能於該時機點前後施 行橋梁維修或補強作業,將可使所需費用降至最低, 效益發揮到最高,故橋梁維修或補強作業時機點約為 t = 40yr。圖 15 為不同等級地震作用下之直接費用三維 變化曲面。

橋梁維修邁向科學化

本文依據國內各橋梁主管機關先前所從事二十二 座鋼筋混凝土橋之混凝土中性化檢測資料,利用非線 性迴歸方法建立合乎台灣本土環境之混凝土橋中性化 評估模式,以及探討混凝土中性化及鹽害對鋼筋銹蝕 之影響。此外,考慮混凝土開裂與鋼筋銹蝕後,鋼筋 混凝土構材有效斷面遞減的時變特性,進行一座標準 單元橋梁結構非線性行為分析,推估出混凝土橋之結 構性能衰退曲線,並採用改良式容量震譜法,完成耐 震能力評估獲得各年度橋梁所能承受之最大地表加速 度,得到不同時間下之橋梁易損性曲線,續據以計算

圖 14 橋梁維修或補強總直接費用逐年變化曲線 (PGA = 0.18 g、0.23g、0.28g、0.33g)

各種不同損壞程度的發生機率與所需之橋梁維修或補強 直接費用逐年變化曲線,由所得橋梁維修或補強總直接 費用逐年變化曲線斜率呈現大幅上揚之時機點,可訂出 橋梁維修或補強作業之最佳時機點,供為老劣化鋼筋混 凝土橋耐震性能生命週期成本效益評估之用,未來亦可 將此研究成果應用於相關橋梁管理系統中,以提供相關 單位作為橋梁維修與補強之決策參考。

參考文獻

- 王傳輝,台灣地區鋼筋混凝土橋中性化效應之耐久 性評估,國立台北科技大學土木與防災研究所碩士 論文,宋裕祺教授指導,台北,2005。
- 牛荻濤,混凝土結構耐久性與壽命預測,科學出版 社,2003。
- 施建志,「混凝土結構的腐蝕檢測及防蝕維修技術」,土木技術,第一卷,第五期,第82-101頁, 1998。
- 4. 岸谷孝一等、「コソクリート中の鉄筋腐蝕に關す る研究」、日本建築學會構造系論文集、Vol. 406、 pp. 1-12、1989。
- 6. 徐善華等,「鋼筋混凝土結構的碳化耐久性分析」, 建築技術開發,2002。
- 6. 蕭輔沛、邱建國、涂豐鈞,「考慮劣化與震損之 RC 校舍耐震能力評估研究」,國家地震工程研究中 心,2012。
- 7. 邱建國、「劣化建築物之維護管理與永續再生 表 面被覆材料耐久性能評估」、公益財團法人交流協 フェローシップ事業成果報告書、2012。
- 鳥取誠一,宮川豐章,「中性化の影響を受ける場合の鉄筋腐食に關する劣化予測」,土木學會論文集,第64卷,第767期,第35-46頁,2004。
- Sung, Y. C., Su C. K., "Seismic Evaluation of Existing Bridges : Theory And Application," International Training Program for Seismic Design of Structures, National Center for Research on Earthquake Engineering, Taipei, Taiwan, October 26, 2005.
- 李剛,程耿東,基於性能的結構抗震設計一理 論、方法與應用,科學出版社,北京,2004。
- 11. Sung, Y.C., Su, C.K., "Time-dependent Seismic Fragility Curves on Optimal Retrofitting of Neutralized Reinforced Concrete Bridges", Structure and Infrastructure Engineering, Vol.7, No.10, p.p. 797-805, 2011.
- 12.台灣省政府交通處公路局,橋梁工程標準圖一預 力混凝土簡支梁橋(PCI型梁橋),1991。
- 13.鋼筋混凝土橋梁耐震能力評估軟體(SERCB), http://sercb.dyndns.org/SERCBBridgeWeb。