

DOI: 10.6653/MoCICHE/2017.04401.07

應用 斜回途動 届复数御 提升 重要設備耐震性能

汪向榮/財團法人國家實驗研究院國家地震工程研究中心研究員 林旺春/財團法人國家實驗研究院國家地震工程研究中心助理研究員 游忠翰/國立臺灣大學土木工程學系博士候選人 楊卓諺/財團法人國家實驗研究院國家地震工程研究中心助理研究員

直接應用隔震技術於重要設備或設施,為目前最可行且能夠直接有效提升其耐震能力的方法之一。其 中,斜面滾動隔震技術之主要特性具有諸多優勢,如穩定的水平傳遞加速度控制以及重力自復位能力,能 夠輕易滿足新世代性能設計的要求,確保傳統建築物內的重要設備或設施,在地震中及震後正常運作無 虜。過去國家地震工程研究中心經由一系列的研究,探討斜面滾動隔震支承之運動行為,進而提出可應用 於商用工程軟體的簡化分析模型。然而,為了獲得更準確且保守的結果,建議在分析設計時仍需考慮垂直 擾動對於水平加速度反應的影響。同時,針對隔震設計位移,則透過大量與設計反應譜相容的地震歷時進 行數值分析與回歸統計,提出了保守的經驗預測方法,可以有效率地獲得隔震位移設計需求。以上的研究 成果,提供了實務工程師於設計與分析時之重要依據。再者,亦由振動台試驗結果,說明了斜面滾動隔震 技術確實具有良好且滿足設計預期的隔震效益,並驗證了分析模型與預測方法的可行性與準確性。目前, 此項創新隔震技術已落實應用於國內許多重要單位與產業,有效保障人民與社會安全,並大幅提升我國的 國際競爭力。

性能設計基本精神

近年來建築物在耐震設計上的考量,已由過去僅考 慮建築物於地震作用下能夠安全無虞且保障基本生命安 全,演變為亦須兼顧建築物於震後修繕、機具設備成本 及營運等經濟層面之考量,確保不同設計功能的建築物 能夠於地震侵襲下正常運作無虞,此為下一世代建築物 性能設計(Performance-based Design)的基本精神^{[1-3]。} 因此,建築物的耐震性能表現不僅與結構本身的抗震能 力有關,亦與建築物內重要設備與設施的功能表現息息 相關,也就是說,即使結構本身在地震中或震後仍能保 持完好無損壞,然而由於振動敏感的重要設備或設施機 能失常或甚至毀損(圖1),仍會導致建築物無法發揮 預期功能。

過去諸多地震災害已有類似的經驗與教訓,舉凡如 高科技產業、通訊網路產業、銀行、醫院、防救災單位等 的大型電腦主機、伺服器主機、資料儲存設備、網路與通 訊、發電機、醫療儀器在地震中無法發揮正常功能,博 物館、美術館、歷史研究所等的貴重展示品、藝術品、古 董、古文物在地震中遭受嚴重毀損,這些都使得建築物仍 然無法發揮預期的設計功能。值得注意的是,高科技產 業中精密儀器與設備的投資成本往往遠高於建築物的建 造成本,且因地震造成的半成品或製程延宕衍生的損失 金額,更是遠比儀器與設備的損壞高出許多。此外,資 料儲存中心與博物館內的重要資料與古文物,若是在地 震中遭受毀損,對於國家經濟與歷史永續發展的影響更 是難以金錢衡量,更不用說是緊急應變中心與醫院等重 要民生設施,其內部儀器與設備若於地震中發生故障或 損壞,或是在震後無法正常運作,將嚴重危害人民與社 會安全。地震是台灣不可避免的宿命,光是規模不大且 發生頻繁的地震,便足以威脅國內民生設施與重要產業 的正常運作,影響人民生活品質,亦會造成經濟損失而 衝擊台灣在國際上的競爭力。因此,如何能夠真正滿足 不同設計功能建築物的耐震性能(圖2),實為地震工程 (Earthquake Engineering)研究與應用之重要課題。

斜面滾動隔震技術

對於並無採用結構控制技術 (Structural Control Technology)^[4]的建築結構而言,直接應用隔震技術 (Seismic Isolation Technology)於重要設備或設施,為 目前最可行且能夠直接有效提升其耐震能力的方法之 一。無論採用何種型式的隔震支承(Seismic Isolator), 其在垂直承載下必須具有良好的水平變形能力以及震後 自復位能力,為了達到更佳的耐震性能,阻尼消能機制 亦是不可或缺。此外,為了降低隔震系統設計參數與不 同設備條件之相依性,如不同重量、尺寸等,以及減少 其對於設備運作環境之影響(如潔淨條件與日後維護便 利),滑動式與滾動式金屬隔震支承[5,6]搭配適當之阻尼 消能機制,為目前最為廣泛應用於重要設備與設施的防 震措施。其中,於重要設備或設施下方採用滾動隔震技 術[7-12],即利用圓球或滾軸在兩曲面或斜面間滾動,因 為滾動摩擦力遠小於輸入水平擾動力,因此可大幅降低 傳遞至上方重要設備或設施的水平加速度反應,目擾動 後可因自重自動回復至原來位置。相較於圓球,滾軸設 計具有更佳的垂直承載能力;此外,若滾動面為斜面 設計[13,14],可有效控制水平傳遞加速度為一穩定且固定 值,輕易滿足欲保護標的物之性能設計要求,且不具有 固定的水平自振頻率,不易與水平輸入擾動產生共振。 因此,相關研究於近年來持續被關注與探討,並已開始 普遍應用於許多重要設備或設施以提升其耐震性能。

國家地震工程研究中心(National Center for Research on Earthquake Engineering)研發的斜面滾動隔震支承 (Sloped Rolling-type Seismic Isolator)^[14],由三組版元件 組成,兩對相互水平正交的滾軸分別安裝於三版之間, 滾動面可為斜面與平面之組合設計,藉由滾軸於兩水平 正交方向運動,可於任何水平方向均具有良好的隔震效 益(圖3)。除具上述優勢外,由於在單一水平向採用多 滾軸同步運動,可有效防止非預期滑動,具備更佳的穩 定性及自復位能力。再者,為了防止滾軸在通過 V 型斜 面轉折處因瞬間撞擊而降低隔震效益,設計了固定曲率 半徑的圓弧曲面範圍。更重要的是,由於滾動摩擦力提 供的阻尼消能能力有限,因此,藉由側版與三版間的內 置滑動摩擦機制提供額外的阻尼消能能力,可有效抑制 擾動中過大的位移反應,並可於擾動後迅速停止滾動行 為(圖4)。

精確的運動方程式

利用滾軸在上、下版運動的簡化分析模型(圖 5(a)), 可精確推導斜面滾動隔震支承的運動方程式(Equation of Motion)^[14,15],其中,M、 m_1 與 m_2 分別為保護標的物、 上版及滾軸的質量; θ_1 與 θ_2 分別為上、下版與滾軸接觸 的斜面設計角度;r為滾軸半徑。當滾軸在斜面上滾動 時(圖 5(b)),考慮上版(或滾軸)於下版左、右兩側且 兩相反滾動方向,其中,g為重力加速度; $\ddot{x}_g(\ddot{z}_g)$ 為水 平(垂直)加速度輸入擾動; $x_1(z_1)$ 、 $\dot{x}_1(\dot{z}_1)$ 與 $\ddot{x}_1(\ddot{z}_1)$ 分 別為保護標的物與上版相對於圖中O點之水平(垂直) 位移、速度及加速度反應; $x_2(z_2)、\dot{x}_2(\dot{z}_2)$ 與 $\ddot{x}_2(\ddot{z}_2)$ 分別 為滾軸相對於圖中O點之水平(垂直)位移、速度及加 速度反應;I為滾軸的轉動慣量; α 為滾軸的轉動角加速 度; f_1 與 f_2 分別為作用於上版與滾軸、滾軸與下版間的 滾動摩擦力; N_1 與 N_2 分別為作用於上版與滾軸、滾軸 與下版間的正向力; F_p 為側版內置摩擦阻尼所提供之阻 尼力。

假設滾軸質量遠小於上版與保護標的物質量總和, 經自由體動力與轉動平衡,共可求解九個物理量之精確 解,分別為α、^x₁、^z₁、^x₂、^z₂、N₁、N₂、f₁、f₂,其中, 斜面滾動隔震支承保護標的物與上版相對於圖中O點 的水平及垂直加速度反應分別如下二式:

$$\ddot{x}_{1} = \frac{-(\cos\theta_{1} + \cos\theta_{2})}{2(M+m_{1})[1+\cos(\theta_{1}-\theta_{2})]} \{2F_{D}\operatorname{sgn}(\dot{x}_{1}) + (M+m_{1})[\ddot{x}_{g}(\cos\theta_{1} + \cos\theta_{2}) + (g+\ddot{z}_{g})(\sin\theta_{1} + \sin\theta_{2})\operatorname{sgn}(x_{1})]\}$$
(1)

$$\ddot{z}_{1} = \frac{-(\sin\theta_{1} + \sin\theta_{2})}{2(M+m_{1})[1+\cos(\theta_{1}-\theta_{2})]} \{2F_{D}\operatorname{sgn}(x_{1})\operatorname{sgn}(\dot{x}_{1}) + (M+m_{1})[\ddot{x}_{g}(\cos\theta_{1} + \cos\theta_{2})\operatorname{sgn}(x_{1}) + (g+\ddot{z}_{g})(\sin\theta_{1} + \sin\theta_{2})]\}$$
(2)

由上二式精確解(Exact Solution)並無法直觀地看 出斜面滾動隔震支承的重要特性,且因其反應與垂直加 速度輸入擾動相關,無法藉由目前普遍使用的商用工程 軟體(如 SAP2000、ETABS、MIDAS等)進行數值模 擬與分析,必須透過自行撰寫或開發的數值分析程式進 行解析。解析時亦需注意在擾動過程中,因內置摩擦阻 尼力的存在,可能導致上、下版間於瞬時不會發生相對 運動之情況(即滾軸無運動)。此外,滾軸於圓弧曲面 滾動的數值分析方法,可合理地假設圓弧曲面由無限多 個連續斜面組成,因此仍可利用上二式進行解析。

合理的簡化分析

由於式 (1) 與式 (2) 之精確解,無法直觀地看出斜 面滾動隔震支承的重要特性。因此,合理假設斜面設計 角度 θ_1 與 θ_2 通常很小,其高次項可被忽略,即 sin² θ_1 與 sin² $\theta_2 \approx 0$ 、cos² θ_1 與 cos² $\theta_2 \approx 1$ 、sin θ_1 sin $\theta_2 \approx 0$ 、cos θ_1 cos $\theta_2 \approx 1$,在無垂直擾動下(不考慮 \ddot{z}_g),可將式 (1) 與式 (2) 進一步簡化(Simplified Solution)如下:

$$\ddot{x}_{1} = \frac{-(\cos\theta_{1} + \cos\theta_{2})}{4(M+m_{1})} [(M+m_{1})g(\sin\theta_{1} + \sin\theta_{2})\operatorname{sgn}(x_{1}) + 2F_{D}\operatorname{sgn}(\dot{x}_{1})] - \ddot{x}_{g}$$
(3)

$$\ddot{z}_{1} = \frac{-(\sin\theta_{1} + \sin\theta_{2})\operatorname{sgn}(x_{1})}{4(M+m_{1})} \left[(M+m_{1})\ddot{x}_{g}(\cos\theta_{1} + \cos\theta_{2}) + 2F_{D}\operatorname{sgn}(\dot{x}_{1}) \right]$$
(4)

由式(3)可看出,斜面滾動隔震支承的水平傳遞加 速度反應,與斜面設計角度 $\theta_1 \gtrsim \theta_2$ 、內置摩擦阻尼力 (F_D)、保護標的物與上版質量總和($M + m_1$)相關。 若上、下版與滾軸接觸的斜面採用相同設計角度,即 $\theta_1 = \theta_2$,則當滾軸於斜面上滾動時,斜面滾動隔震支承 的水平傳遞加速度反應可表示為:

$$\ddot{x}_1 + \ddot{x}_g = -\frac{g\sin 2\theta}{2}\operatorname{sgn}(x_1) - \frac{F_D\cos\theta}{(M+m_1)}\operatorname{sgn}(\dot{x}_1)$$
(5)

當滾軸於圓弧曲面(固定曲率半徑為R)上滾動時,可合理假設 $\cos \theta \approx 1$ 及 $\sin \theta \approx x_1 / 2R$,因此可得水 平傳遞加速度反應為

$$\ddot{x}_1 + \ddot{x}_g = -\frac{g}{2R} x_1 \operatorname{sgn}(x_1) - \frac{F_D}{(M+m_1)} \operatorname{sgn}(\dot{x}_1)$$
 (6)

同理,若上、下版分別採用平面與斜面設計,即 $\theta_1 = 0, \theta_2 = \theta$,則當滾軸分別於斜面與圓弧曲面上滾動 時,斜面滾動隔震支承的水平傳遞加速度反應分別如下 二式:

$$\ddot{x}_{1} + \ddot{x}_{g} = -\frac{g\sin\theta}{2} \operatorname{sgn}(x_{1}) - \frac{F_{D}}{(M+m_{1})} \operatorname{sgn}(\dot{x}_{1})$$
(7)

$$\ddot{x}_{1} + \ddot{x}_{g} = -\frac{g}{4R} x_{1} \operatorname{sgn}(x_{1}) - \frac{F_{D}}{(M+m_{1})} \operatorname{sgn}(\dot{x}_{1})$$
(8)

經由合理的簡化,斜面滾動隔震支承的力學行為與 受震反應,可利用目前普遍使用的商用工程軟體,建立 一由 Multi-linear Elastic 與 Plastic (Wen)^[16]分析模型組 成的簡化雙旗桿遲滯迴圈數值模型進行解析。以上、下 版與滾軸接觸的斜面採用相同設計角度為例(圖6), 當滾軸在圓弧曲面上滾動時,Multi-linear Elastic 分析模 型中的第一段斜率為 $(M + m_1)g / 2R$;當滾軸在斜面上 滾動時,Multi-linear Elastic 分析模型中的第二段斜率為 零,且對應 Y 軸截距為 $(M + m_1)g \sin 2\theta / 2$;無論滾軸在 圓弧曲面或斜面上滾動時,Plastic (Wen)分析模型中 的特徵強度均為 F_D 。同理,上、下版分別採用平面與 斜面設計,以及上、下版分別採用不同斜面角度設計, 均可採用相同的概念與方式進行解析。

然而,忽略斜面設計角度 θ_1 與 θ_2 的高次項,是否

仍能得到足夠精確且保守的分析結果?另外,若同時有 水平與垂直擾動,垂直擾動對於水平傳遞加速度的影響 又有多大?以下利用一簡單的數值分析進行探討^[15]。

以 25 組不同角度設計組合之斜面滾動隔震支承進 行數值分析,斜面角度設計由2度以漸增1度變化至6 度,即(θ_1 , θ_2) = (2°~6°, 2°~6°),不同設計組合 皆具有一致的摩擦阻尼力設計(F_p=301N),上方保護 標的物及上版總質量 $(M + m_1)$ 假設為 1000 N-sec²/m。 數值分析水平單軸向(Unilateral)及雙軸向(水平單軸 向與垂直單軸向, Biaxial)之輸入擾動採用三組真實地 震紀錄與三組人造加速度歷時[17,18],並考慮不同之輸入 最大加速度(Peak Acceleration, PA)等級(表1)。利 用式(1)與式(3)在Kobe輸入擾動下,不同斜面角度設 計之遲滯迴圈分析結果(圖7)可發現,其中,BE、 UE 與 US 分別為利用式 (1) 預測雙軸向擾動下之分析結 果、利用式(1)預測水平單軸向擾動下之分析結果、以 及利用式(3)預測水平單軸向擾動下之分析結果,當滾 軸進入斜面滾動時,相較於忽略斜面角度高次項,忽略 垂直擾動對於水平傳遞加速度反應的影響相當顯著,實 際的水平傳遞加速度反應將不再是穩定的常數。

圖 6 斜面滾動隔震支承的力學行為與簡化分析模型

表1 檢討簡化分析之輸入擾動

輸入	地震記録 印度 おんて しんしょう しんしょ しんしょ		0/	輸入最大加速度 PA 等級 (g)			
擾動	地展礼翊央而水汉 隐 品 动	朝)(()10120	50%	75%	100%		
El Centro	IMPVALL/I-ELC180	Unilateral	X	0.08	0.16	0.23	0.31
	IMPVALL/I-ELC-UP	Dissuial	X	0.08	0.16	0.23	0.31
	Imperial Valley, U.S., 1940/05/19	Diaxiai	Z	0.05	0.11	0.16	0.21
Kobe	KOBE/KJM000	Unilateral	X	0.21	0.41	0.62	0.82
	KOBE/KJM-UP	Diavial	X	0.21	0.41	0.62	0.82
	Kobe, Japan, 1995/01/16	Diaxiai	Ζ	0.09	0.17	0.26	0.34
ChiChi	CHICHI/CHY028-N	Unilateral	X	0.19	0.38	0.57	0.76
	CHICHI/CHY028-V	Dissist	X	0.19	0.38	0.57	0.76
	Chi-Chi, Taiwan, 1999/09/21	Diaxiai	Ζ	0.09	0.17	0.26	0.34
AC 156-1	RRS specified in AC156	Unilateral	X	0.13	0.25	0.38	0.50
	Isolated equipment is placed at 3rd floor (8.75 m in elevation) of a	Diavial	X	0.13	0.25	0.38	0.50
	7-story building (24 m in height) at Taipei City	Diaxiai	Z	0.06	0.13	0.19	0.25
AC 156-2	RRS specified in AC156	Unilateral	X	0.25	0.50	0.75	1.00
	Isolated equipment is placed at 3rd floor (8 m in elevation) of a 3-story	Diswist	X	0.25	0.50	0.75	1.00
	building (12 m in height) at Nantou County	Diaxiai	Z	0.13	0.25	0.38	0.50
IEEE	RRS specified in IEEE Std 693TM-2005 for high performance level	Unilateral	X	0.25	0.50	0.75	1.00
		Diavial	Χ	0.25	0.50	0.75	1.00
		DiaXiai	Z	0.20	0.40	0.60	0.80

為了能夠分別且清楚地討論忽略斜面角度高次項與 垂直擾動對於水平傳遞加速度反應的影響,以下定義兩 個重要指標:

$$ER_{1} = \frac{\max(|A_{UE}|) - \max(|A_{US}|)}{\max(|A_{US}|)} \times 100\%$$
(9)

$$ER_{2} = \frac{\max(|A_{BE}|) - \max(|A_{UE}|)}{\max(|A_{UE}|)} \times 100\%$$
(10)

其中, ER₁ 為忽略斜面角度高次項造成低估水平最 大加速度反應的指標; ER₂ 為忽略垂直擾動造成低估水 平最大加速度反應的指標; A_{UE} 與 A_{BE} 分別為利用式(1) 預測水平單軸向及雙軸向擾動下之水平向加速度反應; A_{US} 為利用式(3)預測水平單軸向擾動下之水平加速度 反應。

由不同斜面角度設計在水平單軸向擾動下之 ER_1 值 的變化(圖8)可發現,斜面角度愈大, ER_1 值愈大, 即忽略斜面角度高次項會造成水平最大加速度反應更為 低估,然其影響相當有限。在 Unilateral-100%-ChiChi 擾動下,斜面角度設計(θ_1 , θ_2) = (6° , 6°)發生最 大 ER_1 值,其值僅約 5.10%。再者,在不同垂直加速度 等級雙軸向擾動下之 ER_2 值變化(圖9),可觀察到垂 直加速度等級愈大, ER_2 值愈大,即忽略垂直擾動會 低估水平最大加速度反應,其影響較斜面角度高次項 更為顯著。在 Biaxial-100%-IEEE 擾動下,斜面角度設

計(θ_1 , θ_2) = (2°, 2°)發生最大 *ER*₂值,其值約為 36.59%。因此,在工程實務分析與設計上,若垂直擾動 具一定程度的加速度值,為能夠獲得更準確且保守的結 果,建議需考慮垂直擾動對於水平加速度反應的影響, 即利用式(1)進行詳細分析與設計。

設計位移的評估

由前述推導之運動方程式,可以直接設計斜面滾動 隔震支承的水平傳遞加速度,然必須針對輸入擾動進行 數值積分運算後,方能估計其最大隔震位移,無法依循 傳統的等效靜力分析程序(Equivalent Force Procedure) 進行初步位移設計^[19],在實務應用上較不同於傳統的隔 震設計(Seismic Isolation Design)。因此,以下將考慮 不同設計反應譜(Design Spectrum)擬合製作的人造加 速度歷時,針對不同的斜面滾動隔震支承設計參數,進 行一系列的數值分析,並藉由回歸統計的方式,得到合 理且保守的最大隔震位移經驗預測公式。

舉例而言,假設設計目標工址最大地表加速度 (Peak Ground Acceleration)及一秒週期水平譜加速度 係數分別為 0.32 g及 0.45^[20],地盤類型為第一類地盤, 斜面滾動隔震支承之內置摩擦阻尼力 $F_p = \mu W = 0.1W$ (W為隔震標的物重量),考慮不同斜面角度設計(θ_1 + $\theta_2 = 4^\circ \sim 12^\circ$,遞增 2 度變化)之數值模型進行分析。 選取一百筆經設計反應譜擬合製作的加速度歷時進行分 析,並計算在各斜面角度設計條件下之最大隔震位移 平均值,以及其值加上一倍與兩倍標準差(圖 10),並 保守以平均值加上兩倍標準差,作為該設計反應譜條件 下,各斜面角度具備特定摩擦阻尼設計之最大隔震位移 反應。由圖中可進一步觀察到,不同斜面角度設計對於 最大隔震位移反應的影響相當有限,故再將不同斜面角 度設計的統計值進行平均,可合理地代表在該設計反應 譜條件下斜面滾動隔震支承的隔震位移設計值。

以相同的方法,針對最大地表加速度為 0.32 g 的各 地盤類型設計反應譜(含一般工址與台北盆地區域,以 不同之短周期與中、長週期分界 T₀ 定義),考慮不同摩 擦阻尼設計的斜面滾動隔震支承數值模型,進行最大隔 震位移反應回歸統計(圖 11),可分別得到一般工址與 台北盆地區域條件下,具不同摩擦阻尼設計之隔震設計 位移經驗預測公式如下:

$$D_D = \alpha T_0 + \beta \tag{11}$$

 $\alpha = a_0 + a_1 \mu + a_2 \mu^2 \tag{12}$

$$\beta = b_0 + b_1 \mu + b_2 \mu^2 \tag{13}$$

其中, D_D 為隔震設計位移; T_0 為設計反應譜短周期與中、長週期之分界; α 、 β 為隨 μ 改變之變數,可由二次曲線回歸求得,並以參數 a_0 、 a_1 、 a_2 、 b_0 、 b_1 、 b_2 表示之,如式(12)與式(13)所示。

圖 10 各斜面角度設計之最大隔震位移回歸統計

圖 11 不同設計反應譜及摩擦阻尼設計之最大隔震位移回歸 統計

依上述方式針對斜面滾動隔震支承的分析結果進行 回歸統計,可得於最大地表加速度為 0.32 g 前提下,一 般工址與台北盆地區域條件下的設計公式參數如下表:

表2 隔震設計位移經驗預測公式參數

設計反應譜		T_0	$\alpha = a_0 + a_1 \mu + a_2 \mu^2$		$\beta = b_0 + b_1 \mu + b_2 \mu^2$			
			a_0	a_1	a_2	b_0	b_1	b_2
台北盆地	一區	1.6	-100	1000	-2500	150	-1500	4000
	二區	1.3						
	三區	1.05						
An	一類	0.56						
一般	二類	0.68	-10	10	250	60	-350	350
느儿	三類	0.84						

安裝設計的介紹

斜面滾動隔震支承的安裝,可因應不同設備、不同 空間的需求,進行單獨或組合設計。例如,若欲保護之 標的物為單組櫃體設備,可將斜面滾動隔震支承直接安 裝於設備下方(圖12);若欲保護之標的物為多組櫃體 設備,則可將其以底部框架併櫃連結,或是利用上方框 架組合更多櫃體設備,於下方安裝適當數量的斜面滾動 隔震支承(圖13),如此設計可增加隔震系統上方結構 的剛性與穩定性,並降低上方結構的高寬比,以確保隔 震效益確實發揮;若欲保護大面積之標的物,如整個資 訊機房、展場或庫房,則可採用隔震高架地板設計進行 整區隔震(圖14)。須注意因採用隔震技術之故,所有 隔震系統與隔震後的設備四周須留設足夠的空間供隔震 作動使用,以及設備的連接線材亦需要有足夠的餘裕長 度供隔震作動使用。

圖 12 單櫃隔震

(a) 底部框架併櫃連結隔震 圖 13 多櫃組合隔震

(b) 上方框架組合櫃體隔震

圖 14 隔震高架地板系統

試驗與驗證

過去已針對斜面滾動隔震支承不同的安裝方式,以 及將其應用於不同的重要設備或設施進行地震模擬振動 台試驗 (Shaking Table Test),例如,單組伺服器主機、 展示櫃、典藏櫃與高科技廠房精密設備安裝斜面滾動 隔震支承(圖15),多組資料儲存設備、典藏櫃安裝斜 面滾動隔震支承(圖16),以及斜面滾動隔震高架地板 (圖 17), 輸入水平擾動包括真實地震紀錄以及相關耐 震規範要求的人造加速度歷時(表1)。振動台試驗結果

圖 15 單櫃隔震試驗

(a) 資料儲存設備 圖 16 多櫃組合隔震試驗

圖 17 資訊機房隔震高架地板系統試驗

顯示,經由斜面滾動隔震支承傳遞之水平加速度反應可 有效控制在設計範圍內且為一穩定值,同時具有良好的 遲滯迴圈表現且滿足設計之內置摩擦阻尼消能能力(圖 18 與圖 19)。因此,一系列的試驗結果,驗證了斜面滾 動隔震支承確實具有良好且滿足設計預期的隔震效益。 另外,以目前普遍使用的商用工程軟體 SAP2000,根據 試驗採用之斜面滾動隔震支承設計參數,建立簡化雙旗 桿遲滯迴圈數值模型以進行在水平擾動下之解析,由與 試驗結果的比較可知(圖18與圖19),不論在歷時反應 或遲滯迴圈表現,分析與試驗結果均相當吻合。

圖 18 斜面滾動隔震支承於 Unilateral-50%-Kobe 擾動之數值 模擬與試驗結果比較

圖 19 斜面滾動隔震支承於 Unilateral-100%-AC156-1 擾動之 數值模擬與試驗結果比較

推廣與應用

目前國家地震工程研究中心研發的斜面滾動隔震 支承,已透過模組化之分析與設計,實際應用於國內許 多重要單位與產業(圖20),包括國家實驗研究院高速 網路與計算中心資訊機房、中央災害應變中心中部備援 中心資訊機房、中央研究院歷史語言研究所文物典藏設 施、中央氣象局超級電腦、中華電信機房主機、中華郵 政機房伺服器、高科技廠房精密設備等。在經歷了多次 真實地震的考驗,經保護的重要設備或設施在地震中與 震後不但毫髮無傷,而且能夠正常運作不需停機,有效 保障人民與社會安全,降低直接與間接經濟損失,進而 提升我國的國際競爭力。

圖 20 落實應用於國內重要單位與產業

結論與建議

重要設備或設施應用斜面滾動隔震技術,可以控 制地震中水平傳遞加速度於一安全穩定範圍內,滿足性 能設計之最高要求,且於震後迅速恢復至未受地震搖晃 前的初始狀態。根據國家地震工程研究中心提出的一系 列研究成果,目前工程師已能夠進行精確且保守的分析 設計,並可經由振動台試驗進行驗證。此創新技術亦已 落實應用於國內許多重要單位與產業,有效保護防救災 體系、歷史文化、重要資料、經濟競爭力等(圖 21), 以台南科學園區在 2016 年 2 月美濃地震的實際經驗為 例,經此創新隔震技術保護的資訊機房與高科技精密設 備,在地震中與震後均能正常運作不停機。未來,國家 地震工程研究中心仍會持續關注民生與經濟設施的耐震 性能需求,並與產業攜手合作,努力研發並落實創新隔 震技術於國內重要單位與產業,持續提升我國人民的生 活水準以及國家的經濟競爭力。

誌謝

本研究要感謝財團法人國家實驗研究院國家地 震工程研究中心提供實驗支援,以及科技部研究計畫 「多斜面變阻尼滾動隔震平台之數值分析與試驗研究 (I)」(計畫編號:103-2221-E-492-005-)、「多斜面變 阻尼滾動隔震平台之數值分析與試驗研究(II)」(計 畫編號:104-2221-E-492-021-)以及「斜面式滾動隔 震支承於平面非比例運動之行為研究」(計畫編號: 105-2221-E-492-006-MY2)提供研發經費,特此申謝。

參考文獻

- Hamburger, R. O. and Moehle, J. P. (2000), "State of Performance-Based Earthquake Engineering in the United States," Proceeding of the Second US-Japan Workshop on Performance-based Earthquake Engineering Methodology for Reinforced Concrete Building Structures, Sapporo, 2000. Pacific Earthquake Engineering Research Center, Report No. PEER-2000/10, pp. 15-27.
- Bachman, R. E., Hamburger, R. O., Comartin, C. D., Rojahn, C., and Whittaker, A. S. (2003), "ATC-58 framework for Performance-Based Design of Nonstructural Components," ATC-29-2 Seminar on Seismic Design, Performance, and Retrofit of Nonstructural Components in Critical Facilities, Applied Technology Council, pp. 49–61.
- Huang, Y. N., Whittaker, A. S., Luco, N., and Hamburger, R. O. (2009), "Scaling Earthquake Ground Motions for Performance-Based Assessment of Buildings," Journal of Structural Engineering, Vol. 137, No. 3, pp. 311-321.
- Soong, T. T. and Constantinou, M. C. (1994), "Passive and Active Structural Vibration Control in Civil Engineering," Springer-Verlag, NY.
- ISO-BaseTM seismic isolation platform, from the World Wide Web: http://www.worksafetech.com/ products/iso-base/.
- CRS, cosine curved rail system, from the World Wide Website: http:// www.oiles.co.jp/en/menshin/ building/menshin/kikimenshin/.
- Harvey, Jr. P. S. and Kelly, K. C. (2016), "A Review of Rolling-Type Seismic Isolation: Historical Development and Future Directions," Engineering Structures, Vol. 125, pp. 521–531.
- Guerreiro, L., Azevedo, J. and Muhr, A. H. (2007), "Seismic Tests and Numerical Modeling of a Rolling-Ball Isolation System," Journal of Earthquake Engineering, Vol. 11, No. 1, pp. 49–66.
- Harvey, Jr. P. S. and Gavin, H. P. (2014), "Double Rolling Isolation Systems: A Mathematical Model and Experimental Validation," International Journal of Non-Linear Mechanics, Vol. 61, pp. 80–92.
- Kasalanati, A., Reinhorn, A. M., Constantinou, M. C., and Sanders, D. (1997), "Experimental Study of Ball-In-Cone Isolation System," Proceedings of the ASCE Structures Congress XV, Portland.
- Mahmood, H. and Amirhossein, S. (2011), "Using Orthogonal Pairs of Rollers on Concave Beds (OPRCB) as a Base Isolation System - Part I: Analytical, Experimental and Numerical Studies of OPRCB Isolators," The Structural Design of Tall and Special Buildings, Vol. 20, No. 8, pp. 928–950.

- Jangid, R. S. and Londhe, Y. B. (1998), "Effectiveness of Elliptical Rolling Rods for Base Isolation," Journal of Structural Engineering, ASCE, Vol. 124, No. 4, pp. 469–472.
- Lee, G. C., Ou, Y. C., Niu, T., Song, J., and Liang, Z. (2010), "Characterization of a Roller Seismic Isolation Bearing with Supplemental Energy Dissipation for Highway Bridges," Journal of Structural Engineering, ASCE, Vol. 136, No. 5, pp. 502–510.
- 14. Wang, S. J., Hwang, J. S., Chang, K. C., Shiau, C. Y., Lin, W. C., Tsai, M. S., Hong, J. X., and Yang, Y. H. (2014), "Sloped Multi-Roller Isolation Devices for Seismic Protection of Equipment and Facilities," Earthquake Engineering and Structural Dynamics, Vol. 43, No. 10, pp. 1443-1461.
- 15. Lin, W. C., Yu, C. H., Wang, S. J., Hwang, J. S., and Chang, K. C. (2015), "Generalized Exact and Simplified Analytical Models for Sloped Rolling-Type Isolation Bearings," Proceeding of the 14th World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, San Diego.
- Wen, Y. K. (1976), "Method for Random Vibration of Hysteretic Systems," Journal of Engineering Mechanics, ASCE, Vol. 102, No. 2, pp. 249-263.
- AC156. (2007), "Acceptance Criteria for Seismic Qualification by Shake-Table Testing of Nonstructural Components and Systems," ICC Evaluation Service Inc..
- IEEE Std 693TM-2005. (2006). "IEEE Recommended Practice for Seismic Design of Substations," Institute of Electrical and Electronics Engineers (IEEE) Power Engineering Society, NY.
- American Society of Civil Engineers (ASCE). (2010), "Minimum Design Loads for Buildings and Other Structures," ASCE/SEI 7- 10, ASCE, Reston, VA.
- 20. 內政部營建署(2011),建築物耐震設計規範及解說,台北。

本文第一作者汪向榮博士, 2010年於國立台灣大學土木工程所 取得博士學位。汪向榮博士自 2000 年起任職於財團法人國家實驗研究 院國家地震工程研究中心,目前擔

任結構控制組研究員,亦為國立成功大學土木工程系 合聘副教授,以及中華民國地震工程學會秘書長與隔 減震委員會主任委員。汪向榮博士的研究興趣包含地 震工程、結構被動控制、非結構耐震、實驗技術,已 發表逾20篇國際期刊文章,擔任計畫主持人研究案逾 百件,並獲得多項專利,於2012年榮獲中華民國結構 工程學會優秀青年結構工程師獎、2015年榮獲國家實 驗研究院第九屆傑出科技貢獻獎學術研究類特優獎、 2016年榮獲國家實驗研究院第七屆傑出服務貢獻獎。