Geologic repository of high-level nuclear waste -Constitutive modeling and boundary value problems-

Ho CHO, Nagoya Institute of Technology

Taiwan-Japan joint Workshop, May 22-23, 2016, Taiwan

Background

Disposal of high-level radioactive waste (HLRW) becomes one of the largest environmental issues in 21st century

Nuclear waste contains radioactive substances that are dangerous to human being

Background

Geologic repository of HLRW is

usually executed at the place below

300m in stable geologic environment.

Geologic repository

One of the most important factors in geological disposal of HLRW, is to understand the thermo-hydraulic-mechanical-air (THMA) behavior of natural barrier or host rock

I. Thermal elastoplastic model for saturated/unsaturated geomaterials

State parameters of unsaturated geomaterials

State variables:

- 1. Skeleton stress
- **2. Degree of saturation**
- 3. Void ratio
- **Smooth transition between saturated and unsaturated state**
- Easy to incorporate with other physical states, such as density, structure, and anisotropy
- Simple framework with a small number of parameters with definite physical meaning

Compared with BBM

1. Net stress **Basic Barcelona model: BBM** 2. Suction

3. Void ratio

1 Sample

2 Pedestal

- ③ Load cap
- **(4)** Membrane
- **(5)** Inner cell
- 6 Load cell
- Pore water pressure meter
- 8 Axial displacement transducer
- **9** Dual-tube bullet
- Pressure difference meter for volumetric stain
- (1) Axial actuator (Up)
- 12 Axial actuator (Down)
- (1) Air supplying tank
- Reference water level for inner cell
- **(15)** Air pressure meter

Triaxial compression device for unsaturated/saturated sample with double-cell type volume meter (Axial translation method)

(a) s=73.5 kPa

(b) s=294 kPa

Influence of degree of saturation on e-ln *p* relation (Results of oedometer test for unsaturated soils extracted from the work by Honda, 2000)

Mean skeleton stress p

e-Inp relation considering moving up of N.C.L. and C.S.L. due to instauration

$$e = \chi(\eta, S_r) - \lambda \ln \frac{p}{p_r} \implies e = N(S_r) - \frac{N(S_r) - \Gamma(S_r)}{\ln 2} \ln \frac{M^2 + \eta^2}{M^2} - \lambda \ln \frac{p}{p_r}$$

$$f = \ln \frac{p}{p_0} + \frac{N(S_r) - \Gamma(S_r)}{C_p(1 + e_0) \ln 2} \ln \frac{M^2 + \eta^2}{M^2} - \frac{\rho_s}{1 + e_0} \frac{1}{C_p} + \frac{\rho_e}{1 + e_0} \frac{1}{C_p} - \mathcal{E}_v^p \frac{1}{C_p} = 0$$

$$d\varepsilon_{v}^{p} = \Lambda \frac{\partial f}{\partial p} \Big|_{\eta=M} = 0 \implies N(S_{r}) - \Gamma(S_{r}) = (\lambda - \kappa) \ln 2$$

Hardening parameter

$$f = \ln \frac{p}{p_0} + \ln \frac{M^2 + \eta^2}{M^2} - \frac{\rho_s}{1 + e_0} \frac{1}{C_p} + \frac{\rho_e}{1 + e_0} \frac{1}{C_p} - \varepsilon_v^p \frac{1}{C_p} = 0$$

d

Associated flow rule:

$$\varepsilon_{ij}^{p} = \Lambda \frac{\partial f}{\partial \sigma_{ij}}$$

Evolution of density:
$$d(\frac{\rho_e}{1+e_0}) = -\Lambda \frac{\rho^p}{p}, \quad \rho = a\rho_e + b\rho_s$$

Evolution of saturation : $d\rho_s = -QdS_r$ $Q = \frac{N_r - N}{S_r^s - S_r^r}$ $d\sigma_r = (E_r - E_r^p) = 1$

$$d\sigma_{ij} = (E_{ijkl} - E_{ijkl}^{p})d\varepsilon_{ij} - AE_{ijkl} \frac{\partial \sigma_{j}}{\partial \sigma_{kl}}$$

$$E_{ijkl}^{p} = E_{ijqr} E_{mnkl} \frac{\partial f}{\partial \sigma_{mn}} \frac{\partial f}{\partial \sigma_{qr}} / D \qquad A = \frac{1}{C_{p}} \frac{Q}{1 + e_{0}} dS_{r} \frac{1}{D}$$

$$D = \frac{h_p}{C_p} + \frac{\partial f}{\partial \sigma_{mn}} E_{mnkl} \frac{\partial f}{\partial \sigma_{kl}}$$

$$h_p = \frac{\partial f}{\partial \sigma_{mm}} + \frac{\rho^{\beta}}{\sigma_{mm}}$$

Thermal effect described with the concept of equivalent stress (Zhang & Zhang, 2009)

Concept of equivalent stress is used to consider the influence of temperature and is expressed as,

Only one parameter, thermal expansion coefficient, α_T , is added to the constitutive model!

New void ratio difference, considering the influence of temperature, is given.

Change of temperature may also cause elastic and plastic strain

On condition that elastic strain caused by change of temperature obeys Hooke's theory, equivalent stress is then defined as;

$$\tilde{p}_m = p_{m0} + K \varepsilon_v^{eT}$$

$$= p_{m0} + 3K\alpha_T(T - T_0)$$

 $\tilde{\rho}_{e} = (\lambda - \kappa) \ln[(\tilde{p}_{N1} \times \text{OCR}) / p_{N1}]$

 p_{m0} : real stressK: bulk modulus α^{s} : thermal expansion coefficientT: current temperature T_{0} : reference temperature (15°C)

Elastoplastic model for saturated/unsaturated geomaterials

Saturation term

$$f = \ln \frac{p}{p_0} + \ln \frac{M^2 + \eta^2}{M^2} - \frac{\rho_s}{1 + e_0} \frac{1}{C_p} + \frac{\tilde{\rho}_e}{1 + e_0} \frac{1}{C_p} - \mathcal{E}_v^p \frac{1}{C_p} = 0$$

Compared with Cam-clay model for saturated soils, only *saturation* is added

Overconsolidation term

Associate flow rule: $d\varepsilon_{ij}^{p} = \Lambda \frac{\partial f}{\partial \sigma_{ij}}$ $\begin{cases} \tilde{\rho}_{e} = (\lambda - \kappa) \ln[(\tilde{p}_{N0} \times \text{OCR}) / p_{N0}] \\ d(\frac{\tilde{\rho}_{e}}{1 + e_{0}}) = -\Lambda \frac{\rho^{\beta}}{[\tilde{p}]}, \quad \rho = a\rho_{e} + b\rho_{s} \end{cases}$ Equivalent stress

(i) Evolution of $\tilde{\rho}_e$ is dependent on : Saturation, Overconsolidation and temperature

 $\begin{cases} N(S_{r}) = N + \frac{N_{r} - N}{S_{r}^{s} - S_{r}^{r}}(S_{r}^{s} - S_{r}); & N_{r} = N(S_{r}^{r}) \\ \rho_{s} = N(S_{r}) - N = Q(S_{r}^{s} - S_{r}); & Q = \frac{N_{r} - N}{S_{r}^{s} - S_{r}^{r}} \\ d\rho_{s} = -QdS_{r} \\ \mathbf{S}^{r} - \mathbf{S}^{s} \end{cases}$

(ii) Evolution of ρ_s is dependent on: Saturation

 S_r^r and S_r^s : residual saturation 100% saturation

Extension of subloading concept (Hashiguchi and Ueno, 1977) to unsaturated soil in skeleton stress space

Moisture characteristic curve (MCC)

Skeleton curve

(1) Initial drying curve

$$S_r = S_r^{s0} - \frac{2}{\pi} (S_r^{s0} - S_r^r) \tan^{-1}((e^{c_1 s} - 1) / e^{c_1 s_d})$$

(2) Main drying curve

$$S_r = S_r^s - \frac{2}{\pi} (S_r^s - S_r^r) \tan^{-1}((e^{c_1 s} - 1) / e^{c_1 s_d})$$

(3) Main wetting curve

$$S_r = S_r^s - \frac{2}{\pi} (S_r^s - S_r^r) \tan^{-1}((e^{c_2 s} - 1) / e^{c_2 s_w})$$

Scanning curve

Tangential stiffness of suctionsaturation relation

$$dS_r = \frac{k_s^{-1}}{s} ds \qquad k_s^{-1} = k_{s0}^{-1} + k_{s1}^{-1}$$

$$k_{s1} = k_{s1}^{s} (1 + c_3 \frac{1 - r}{r}) \qquad r = \begin{cases} \delta_2 / \delta & ds > 0 \\ \delta_1 / \delta & ds \le 0 \end{cases}$$

k_{s0} gradient at r =0

Compression index λ	0.050
Swelling index κ	0.010
Critical state parameter M	1.0
Void ratio N (<i>p</i> '=98 kPa on <i>N.C.L</i> .)	1.14
Poisson's ratio v	0.30
Parameter of overconsolidation <i>a</i>	5.00
Parameter of suction b	5.50
Parameter of overconsolidation β	1.0
Void ratio N_r (<i>p</i> '=98 kPa on <i>N.C.L.S.</i>)	1.28

Parameters involved in constitutive model

Parameters involved in MCC

Saturated degrees of saturation S_r^s	0.82
Residual degrees of saturation S_r^r	0.64
Parameter corresponding to drying AEV (kPa) S_d	550
Parameter corresponding to wetting AEV (kPa) S_w	320
Initial stiffness of scanning curve (kPa) k_{sp}^{e}	200000
Parameter of shape function c_1	0.008
Parameter of shape function c_2	0.013
Parameter of shape function c_3	10.0

Simulated moisture characteristics curve of unsaturated fictional silt

Test and simulated moisture characteristics curve of unsaturated rockfill (test data from the work by Kohgo et al, 2007)

(a) Stress, strain and dilatancy relation ($\sigma_3 = 100$ kPa)

Verification of the model by drained and exhausted triaxial compression tests for a rockfill with submergence process (test data from the work by Kohgo et al, 2007)

Verification of the model by drained and exhausted triaxial compression tests for a rockfill with submergence process (test data from the work by Kohgo et al, 2007)

Parameters of silt in MCC

Consolidation tests
 Triaxial compression tests

 under different temperature .
 (Test data from Uchaipichat and Khalili , 2009)

Saturated degrees of saturation S_r^s	1.00
Residual degrees of saturation S_r^r	0.30
Parameter corresponding to drying AEV (kPa) S_d	18.0
Parameter corresponding to wetting AEV (kPa) S_w	5.0
Initial stiffness of scanning curve (kPa) k_{sp}^{e}	90.0
Parameter of shape function c_1	0.009
Parameter of shape function c_2	0.013
Parameter of shape function c_3	3.0

Material parameters of silt

Compression index λ	0.09
Swelling index κ	0.006
Critical state parameter M	2.45
Void ratio N ($p'=98$ kPa on $N.C.L.$)	0.638
Poisson's ratio v	0.30
Parameter of overconsolidation <i>a</i>	60.00
Parameter of suction b	0.00
Parameter of overconsolidation β	2.0
Void ratio N_r (p'=98 kPa on N.C.L.S.)	0.665

Verification of proposed model (Test data from Uchaipichat and Khalili, 2009)

Consolidation tests under different temperature

(a) experimental results (Uchaipichat and Khalili, 2009)

Conventional triaxial compression tests under different constant suction and temperature conditions (initial mean net stress= 50 kPa)

(a) experimental results (Uchaipichat and Khalili, 2009)

(b) calculated results Conventional triaxial compression tests under different constant suction and temperature conditions (initial mean net stress= 100 kPa)

Triaxial compression test results Soft sedimentary rock (saturated state)

Stress-strain-dilatancy relation

(Test data from Zhang, Nishimura and Kageyama, 2013 & 2014)

Verification of proposed model soft sedimentary rock (saturated state, σ_3 =0.49MPa)

12 12 -6 -6 20°C 20°C \bigcirc () 10 -5 -5 40°C 10 deviator stress $\sigma_{a}^{-}\sigma_{r}$ (MPa) deviator stress $\sigma_{a}^{-}\sigma_{r}$ (MPa) 40°C volumetric strain ε_{v} (%) volumetric strain ε_{v} (%) 60°C 60°C 8 8 -4 \times 80°C \times 80°C -3 6 -3 6 -2 4 -2 4 2 2 -1 0 0 0 0 -2 -2 $\frac{2}{\text{axial strain } \varepsilon_{a}} \frac{3}{(\%)}$ 0 5 0 2 3 4 5 4 axial strain ε_{0} (%) Simulation **Tests**

(Test data from Zhang, Nishimura and Kageyama, 2013 & 2014)

A simple finite deformation scheme for MCC

There is a basic and intrinsic relationship among the state variables, void ratio e, degree of saturation S_r and gravimetric water content w,

$$w = \frac{S_r e}{G_s} \qquad G_s dw = e dS_r + S_r de$$

Which means that even if dw=0 (constant water content), if void ratio *e* changed, degree of saturation will also change!

Simulated behavior of soil at the process of drying-isotropic loading to full saturation-suction reduction

Simulated behavior of soil at the process of drying-isotropic loading-wetting collapse

II. Field equations for THMA analysis

Discretization of governing equations

Discretization of governing equations

Discretization in space (Galerkin)

iscretization in space
(Galerkin)

$$\begin{bmatrix} C^{t} \end{bmatrix} \{\dot{T}_{N|t}\} + \begin{bmatrix} K^{t} \end{bmatrix} \{T_{N|t}\} = \begin{bmatrix} f^{t} \end{bmatrix}$$

$$\begin{bmatrix} C^{t} \end{bmatrix} = \int_{V} \overline{\rho} \overline{c} \begin{bmatrix} N \end{bmatrix}^{T} \begin{bmatrix} N \end{bmatrix} dV$$

$$\begin{bmatrix} f^{t} \end{bmatrix} = \int_{V} \begin{bmatrix} N \end{bmatrix}^{T} E dV - \int_{S} q \begin{bmatrix} N \end{bmatrix}^{T} dS$$

$$\begin{bmatrix} K^{t} \end{bmatrix} = \int_{V} \overline{k}_{i} \frac{\partial \begin{bmatrix} N \end{bmatrix}^{T}}{\partial x_{i}} \frac{\partial \begin{bmatrix} N \end{bmatrix}}{\partial x_{i}} dV + \int_{V} nS_{r}(\rho c)^{w} v_{i}^{w} \begin{bmatrix} N \end{bmatrix}^{T} \frac{\partial \begin{bmatrix} N \end{bmatrix}}{\partial x_{i}} dV$$

$$+ \int_{V} n(1 - S_{r})(\rho c)^{a} v_{i}^{a} \begin{bmatrix} N \end{bmatrix}^{T} \frac{\partial \begin{bmatrix} N \end{bmatrix}}{\partial x_{i}} dV$$

Discretization in time

(Newmark β) $\left\{T_{N|t+\Delta t}\right\} = \left\{T_{N|t}\right\} + \Delta t \left\{\dot{T}_{N|t}\right\} + \beta \Delta t \left(\left\{\dot{T}_{N|t+\Delta t}\right\} - \left\{\dot{T}_{N|t}\right\}\right)$

 $\left(\begin{bmatrix} C^{t} \end{bmatrix} + \beta \Delta t \begin{bmatrix} K^{t} \end{bmatrix} \right) \left\{ \dot{T}_{N|t+\Delta t} \right\} = \left\{ F^{t} \right\} - \left[K^{t} \end{bmatrix} \left(\left\{ T_{N|t} \right\} + \left(1 - \beta \right) \Delta t \left\{ \dot{T}_{N|t} \right\} \right)$

Energy conservation equation

Discretization of governing equations

Overall stiffness matrix

$$\begin{bmatrix} \begin{bmatrix} K \end{bmatrix} & \gamma^{w} \vec{H}_{Sat}^{w} & \vec{H}_{Sat}^{a} \\ S_{r} \vec{K}_{v}^{T} & -\gamma^{w} \begin{bmatrix} \bar{\alpha} + \bar{A} + F_{sr} \end{bmatrix} & F_{sr} \\ (1 - S_{r}) \vec{K}_{v}^{T} & \gamma^{w} F_{sr} & -[\bar{\beta} + \bar{B} + F_{sr}] \end{bmatrix} \begin{bmatrix} \Delta \vec{u}_{N|t+\Delta t} \\ h_{dE|t+\Delta t}^{w} \\ p_{dEt+\Delta t}^{a} \end{bmatrix} + \begin{cases} 0 \\ \sum_{i=1}^{m} \bar{\alpha}_{i} \gamma^{w} h_{idE|t+\Delta t}^{w} \\ \sum_{i=1}^{m} \bar{\beta}_{i} p_{idE|t+\Delta t}^{a} \end{cases}$$

$$= \begin{bmatrix} \Delta \vec{F}_{|t+\Delta t} + \vec{F}_{T} \Delta \vec{T}_{N|t+\Delta t} + \gamma^{w} \vec{H}_{Sat}^{w} h_{dE|t}^{w} + \vec{H}_{Sat}^{a} p_{dE|t}^{a} \\ -(\bar{A} + F_{sr}) \gamma^{w} h_{dE|t}^{w} & +F_{sr} p_{dE|t}^{a} + \begin{bmatrix} \bar{K}_{WT} \end{bmatrix} \Delta \vec{T}_{N|t+\Delta t} \end{bmatrix}$$

$$\left(\begin{bmatrix} C' \end{bmatrix} + \beta \Delta t \begin{bmatrix} K' \end{bmatrix} \right) \vec{T}_{N|t+\Delta t} = \begin{bmatrix} f' \end{bmatrix} - \begin{bmatrix} K' \end{bmatrix} \left(\vec{T}_{N|t} + (1 - \beta) \Delta t \vec{T}_{N|t} \right)$$

Displacement, water head, air pressure and temperature as unknown variables

III. Slope failure in unsaturated Sirasu ground THMA coupling analysis in FE-FD scheme (Temperature=Const.)

Triaxial compression test of silty clay under undrained and unvented condition (Test data from Oka et al., 2011)

Parameters of MCC of silty clay

Saturated degrees of saturation S_r^{s} ,	<mark>0.99</mark> ₽
Residual degrees of saturation S_r^r 4	0.10₽
Parameter corresponding to drying AEV (kPa) $S_{d^{e^2}}$	220.2+
Parameter corresponding to wetting AEV (kPa) S_{w^2}	5.10₽
Initial stiffness of scanning curve (kPa) $k_{sp}^{e} \sim$	5 8500 .0
Parameter of shape function $c_{I^{*}}$	0.0108
Parameter of shape function $c_{2^{4^2}}$	0.010₽
Parameter of shape function $c_{3^{*2}}$	24.0₽

Material parameters of silty clay

Compression index 2	0.123
Swelling index κ_{φ}	0.062₽
Critical state parameter Me	1.000
Void ratio $N_{(p'=98 \text{ kPa on } N.C.L.)}$	1.00₽
Poisson's ratio 🗤	0.30
Parameter of overconsolidation a_{e^2}	5.00₽
Parameter of suction b_{+}	0.50
Parameter of overconsolidation $\beta \phi$	1.00₽
Void ratio $N_{r}(p'=98 \text{ kPa on } N.C.L.S.)$	1.180
Comparison between test and calculation

Model test (Kitamura et al., 2007)

Test box

Rain falling device

Test conditions

	Case1	Case2	Case3
Density of soil particle (g/cm ³)	2.45	2.40	2.45
Water content in nature (%)	25.6	23.3	23.1
Void ratio	1.57	1.47	1.57
Total density of soil (g/cm ³)	1.20	1.20	1.17

Physical properties of Sirasu

Location of tensiometers and water injection pattern

Drainage conditions

	Case1	Case2	Case3
Тор	drained	drained	drained
Bottom	undrained	undrained	undrained
Back side	undrained	undrained	undrained
Slope face	drained	drained	drained

FEM mesh and loading condition

Calculation conditions

Element behavior of Sirasu

Material parameters

Compression index λ	0.055
Swelling index κ	0.010
Critical state parameter M	1.0
Void ratio N (p'=98 kPa on N.C.L.)	1.55
Poisson's ratio v	0.30
Parameter of overconsolidation <i>a</i>	2.00
Parameter of suction <i>b</i>	0.50
Parameter of overconsolidation β	1.0
Void ratio N_r (p'=98 kPa on N.C.L.S.)	1.57

Relationship between permeability of water & air with saturation

Soil water characteristic curve (MCC)

Comparison of EPWP (Case 1)

Calculation is on the whole coincident with test. The failure time is also the same in calculation and test. In slope surface, however, the lose of suction in calculation is much slower than that at test

Comparison of EPWP (Case 2)

Comparison of EPWP (Case 3)

Calculation is on the whole coincident with test. The failure time is also the same in calculation and test.

Change of degree of saturation

Change of degree of saturation

Shear strain $\sqrt{2I_2^p}$ (I_2^p : 2nd invariant of deviatoric plastic strain)

Distribution of displacement vector

The calculations are totally the same as the tests, that is, Case 1 and Case 3 are much easier to fail than Case 2

IV. THMA coupling analysis of heating test for saturated geomaterials (p_a=constant, S_r=1.0)

Heating test for saturated rock (Gens et al., 2007)

3D THMA analysis conditions

3D FEM mesh

Initial condition: Water pressure: 1 MPa Mean stress: 5 MPa Temperature: 15°C

Boundary conditions: Up, back and right planes: undrained and heat insulated Other planes: Drained and fixed temperature (15°C)

Material parameters and physical parameters

Material parameters

Compression index λ	0.0026
Swelling index <i>k</i>	0.00064
Critical state parameter M	1.0
Void ratio N (p'=98 kPa on N.C.L.)	0.85
Poisson's ratio v	0.30
Parameter of overconsolidation <i>a</i>	2.00
Parameter of suction <i>b</i>	0.50
Parameter of overconsolidation β	1.0
Void ratio N_r (p'=98 kPa on N.C.L.S.)	0.85

Physical parameters

Thermal expansion coefficient $\alpha_t(K^{-1})$	8.0e-06
Thermal expansion coefficient <i>α</i> ^w (K ⁻¹)	2.1e-04
Thermal conductivity k_t (kJ m ⁻¹ K ⁻¹ Min ⁻¹)	0.18
Specific heat C (kJ Mg ⁻¹ K ⁻¹)	840.
Heat transfer coefficient of air boundary a _c ((kJ m ⁻² K ⁻¹ Min ⁻¹)	236.
Specific heat of water C _w (kJ Mg ⁻¹ K ⁻¹)	4184.

Element simulation of triaxial compression test (σ_3 =8 MPa)

Comparison between test and calculation (temperature)

Change of temperature at different positions

Comparison between test and calculation (EPWP)

Change of EPWP at different positions

Comparison between test and calculation (Strain)

Change of Deviatory strain at different positions

Distribution of temperature (only calculation)

Distribution of temperature

V. THMA coupling analysis of heating test for saturated/ unsaturated geomaterial $(p_a=0, S_r \le 1.0)$

Heating tests (Munoz, 2006)

Rock

Stage	Start (day)	End (day)	Time (day)	Action
1	0	982	982	hydration phase
2	982	1522	540	heating phase
3	1523	1800	278	Cooling phase

Analytical conditions

FEM mesh and boundary condition

Material parameters of bentonite and rock+

<i>م</i>	Bentonite∉	Rock₽
Compression index λ_{ψ}	0.0050	0.0020+3
Swelling index x ²	0.010	0.0001↩
Critical state parameter Me	1.80	1.90₽
Void ratio N (p'=98 kPa on N.C.L.)+	1.04	0.62₽
Poisson's ratio v40	0.30₽	0.30₽
Parameter of overconsolidation a^{4^3}	5.0₽	5.0+
Parameter of suction b_{+}	0.00₽	0.00₽
Parameter of overconsolidation \mathcal{G}^{\downarrow}	1.0₽	1.0₽
Void ratio N_r (p'=98 kPa on N.C.L.S.)+	1.06	0.65+2
Thermal expansion coefficient (1/K)+2	1.0×10 ⁻⁵ ¢	3.0×10-6₽
Thermal expansion coefficient of water (1/K)+3	2.1×10-4+ ²	
Thermal conductivity (kJ m ⁻¹ K ⁻¹ Min ⁻¹)+ ³	0.06₽	0.12₽
Specific heat (kJ Mg ⁻¹ K ⁻¹)+	723₽	874↩
Specific heat of water (kJ Mg ⁻¹ K ⁻¹)+ ³	4184₽	

Parameters of MCC+

C.	Bentonite@	Rock
Saturated degrees of saturation $S_r^{s} \leftrightarrow$	1.00₽	1.00₽
Residual degrees of saturation $S_r^r \notin$	0.40₊ਾ	0.40₽
Parameter corresponding to drying AEV (kPa) $S_{d}^{\mu\nu}$	11000₽	2100043
Parameter corresponding to wetting AEV (kPa) $S_{M^{4^2}}$	800⊷	10004
Initial stiffness of scanning curve (kPa) $k_{in}^{\epsilon} e^{i t}$	25000₽	90000 ₽
Parameter of shape function $c_{I^{*2}}$	0.00001+2	0.00003+2
Parameter of shape function $c_{2^{4^3}}$	<mark>0. 000005</mark> ₽	0.00006+3
Parameter of shape function $c_{3^{4^2}}$	<u>30.0</u> ₽	50.0+ ³

Initial conditions

Unsaturated bentonite: s=136MPa; $S_r=70\%$ Saturated soft rock: water head=40m

Distribution of saturation

Result: 2nd and 3rd stages

VI. THMA coupling analysis for geologic repository of HLRW $(p_a=0, S_r\leq 1.0)$

THMA coupling analysis for geologic repository of HLRW

FEM mesh

Thermal, boundary and initial conditions

- Boundary condition : fixed in side and bottom surfaces
- Hydraulic condition : only drained at top surface
- Thermal condition : all the surfaces far from the heating source are at constant temperature of 15°C
- Material: heating source is elastic
- Initial saturation: soft rock is saturated but heating source and bentonite are unsaturated

Background→ Constitutive model→FEM→ Conclusions

FEM---Setting of heat source

Heat released from nuclear waste is given as follow proposed by Thunvik and Braester (1991) :

$$Q(t) / Q_0 = \alpha_1 e^{-\alpha_2 t} + (1 - \alpha_1) e^{-\alpha_3 t}$$

The initial heat Q_0 is given 28.28 kJ/m³/min.

The relation of decay rate and time

Heat emission as input in FEM

FEM---Setting of heat source

The schematic diagram of the field project

1. Volume of HLRW only occupies about 1.6% of total tunnel volume, correspondingly the heat emission as input in FEM is given 1.6%.

2. Heat emission decreases greatly between 10 years and 100 years from the decay rate-time relation. Two cases are considered starting from 10 years and 100 years after emplacing into repository respectively. The calculated times are 300 years in two cases.

MCC and initial condition

MCC (Munoz et al, 2006)

Initial condition

	Rock	Bentonite	
Saturation [%]	100	86	
Suction [MPa]	0	62	
Total head [m]	520	-6945	

Material parameters for constitutive model			
	Bentonite	Rock	
Parameter of overconsolidation a	5.000	2.000	
Parameter of suction b	0.5	0.5	
Parameter of overconsolidation β	1.00	1.10	
Void ratio ($p'=98$ kPa on $N.C.L$) N	1.040	0.450	
Void ratio (<i>p</i> '=98 kPa on <i>N.C.L.S</i>) Nr	1.060	0.530	
Thermal expansion coefficient (1/K) α_T	-1.0×10^{-6}	-2.5×10^{-5}	
Thermal conductivity (kJ m ⁻¹ K ⁻¹ Min ⁻¹) K_t^{S}	0.060	0.200	
Specific heat (kJ Mg-1 K-1) C ^S	723	840	

	Bentonite	Rock
Compression index λ	0.050	0.010
Swelling index κ	0.010	0.001
Void ratio (p '=98 kPa on N.C.L) e_0	1.040	0.500
Poisson's ratio v	0.300	0.120
Saturated degrees of saturation S_r^s	1.00	1.00
Residual degrees of saturation S_r^r	0.40	0.40
Parameter corresponding to drying AEV (kPa) S_d	11000	21000
Parameter corresponding to wetting AEV (kPa) S_w	800	1000
Initial stiffness of scanning curve (kPa) k_{sp}^{e}	25000	90000
Parameter of shape function c_1	0.000001	0.00003
Parameter of shape function c_2	0.000005	0.00006
Parameter of shape function c_3	30.0	50.0

 2.1×10^{-4}

 2.1×10^{-4}

Parameters for MCC

Thermal expansion coefficient of water (1/K) α_T

Changes of saturation and suction

Changes of volumetric and deviatory strains (2D)

Saturated condition (without bentonite)

Comparison of temperature between Case 1 and 2 (2D)

Comparison of saturation between Case 1 and 2 (2D)

Change of saturation (2D)

Change of total water head

Reason why saturated quickly when heating is strong

strong heating results in quick increase of excess pore water pressure

quick decrease of uction $(s = u_a - u_w)$

Satura d quickly

Comparison of volumetric strain between Case 1 and 2 (2D)

In Case 2 (relative weak heating source), expansive of bentonite is larger, why?

Taking more time to reach saturated state $\rightarrow S_r$ developed slower \rightarrow also developed slower

Change of volumetric strain of bentonite (2D)

Due to slower develop of , extra **1***e* happened in Case 2
Comparison of deviatory strain between Case 1 and 2 (2D)

- Deviatory strain in surrounding rock due to huge swelling of bentonite
- In case 2, volumetric strain in bentonite is much larger →larger deviatory stain

CONCLUSIONS

- A thermo-elastoplastic model for unsaturated/saturated geomaterials has been introduced based on the concept of equivalent stress and subloading surface, which can not only describe properly the thermodynamic behavior, but also overconsolidated behavior of soft sedimentary rocks.
- Verification by laboratory tests and field observation proved the validity of the proposed numerical method
- Field equations in THMA FE-FD analysis has been introduced to treat thermo-soil-water-air coupling problem. As a application, a field problem of geological repository of high-level nuclear waste is simulated in unsaturated/saturated condition.
- In 2D simulation, the calculated results shows that the temperature has a great influence on THMA coupling behavior of natural soft rock.

Thank you for your attention!