The First JSCE-CICHE Joint Workshop *~Sustainability and Disaster Reduction~*

May 22-23, 2016 @Garden Villa Hotel, Kaohsiung, Taiwan

Gas Hydrates as Potential Energy Resource and Trigger of Submarine Slope Failure

Nagoya Institute of Technology Prof. (Assistant) Hiromasa Iwai

What is Gas Hydrate ?

H: O

) : C

:0

 $CH_4 \cdot nH_2O$ (hydrate)

n=5.75 for *structure I* hydrate

Gas Hydrate consists of guest gas trapped inside cage-like structures of water molecules.

The gas interacts with the water under the conditions of low temperature and high pressure to form ice-like structure.

Burning MH

 $nH_2O(water) + CH_4(gas)$

Gas Hydrate dissociation process

- A unit volume of gas hydrate dissociates into approximately 165 times the volume of guest gas and 0.8 times of water (at 0°C and atmospheric pressure).
- Gas hydrate can exist only in a low temperature and high pressure conditions. The gas hydrate will dissociate by heating and depressurizing

Methane Hydrate (CH₄·nH₂O) : Recognized as a potential future energy resource

Carbon Dioxide Hydrate (CO₂·nH₂O) : Recognized as a new material for CCS 3/24

MH production test in Japan

 Japan Oil Gas, and Metals National Corporation (JOGMEC) conducted the first offshore methane hydrate production trial in March 2013 in the eastern Nankai-Trough, Japan.

Depressurization method

Geological and Geotechnical problems

In contrast to the aspects of the expected energy source, gas hydrates have been believed to play a important role in the failure of submarine sediments.

Gas hydrates break down was involved in the creation of the megaturbidite.

- ➤ The slides can cause tsunami...
- "In 1979 a 0.15-km³ slide off Nice airport caused <u>a tsunami that killed 11people.</u>"

Nisbet, E.G. and Piper, D.J.W. 1998, Nature, 392(6674), pp.329-330.

Gas hydrate morphology in sediments

- \succ Gas hydrate in the pores works as \succ Dissipation of the hydrate particles will additional soil particles.
- Bond between soil particles.
- Hydrate morphology affects the stiffness, strength, and dilation.
- cause decrease of the material density.
- > Lost of bonding effects or load bearing effects will reduce the stiffness and strength.

Main objectives for this research

- For the purpose of safe and economical production of methane gas from the MH reservoir, further investigations related to mechanical properties of gas hydrate-bearing sediments are required
- In addition, it is essential to understand dissociation-deformation behavior, in order to clarify the relationship between gas hydrate dissociation and submarine slope failure.

- We have developed a temperature pressure controlled triaxial apparatus, which can recreate low-temperature and high-pressure environment like deep seabed-ground.
- We have conducted a series of undrained triaxial compression tests and dissociation tests on gas hydrate-containing sand specimens.
- CO₂-hydrate is used instead of methane hydrate considering safety of the experiment, because it is non-flammable gas.

Testing Apparatus

Temperature and pressure controlled triaxial apparatus

Schematic diagram of the apparatus

10/24

Sample preparation

- Toyoura sand for the host material.
- Initial moisture content : 11%
- Initial void ratio : 0.67

compacted in a stainless mold using the moist tamping method with **a diameter of 35mm and height of 70mm**.

*Hydrate saturation

$$S_r^H = \frac{V^H}{V^V}$$

Material	properties

Density of soil particles $\rho_s(g/cm^3)$	2.64
$D_{50} ({\rm mm})$	0.197
Diameter (mm)	35
Height (mm)	70
Initial void ratio e_0	0.67
Density of CO2 hydrate $\rho^H(g/\text{cm}^3)$	1.12
Target value of initial hydrate saturation S_r^H	0.55
Initial moisture content w (%)	11.0

Formation process

Experimental conditions

6 cases of undrained triaxial compression tests are conducted.

Case-No.	Void ratio	Back pressure	Initial mean effective stress	Temperature	Hydrate saturation
	e_0	u_0^w [MPa]	p'_0 [MPa]	$T[^{\circ}C]$	S_r^H
Case-1	0.74	10	1.0	1.0	0.0
Case-2	0.72	10	2.0	1.0	0.0
Case-3	0.72	10	3.0	1.0	0.0
Case-1H	0.76	10	1.0	1.0	34.6
Case-2H	0.73	10	2.0	1.0	27.8
Case-3H	0.73	10	3.0	1.0	28.5

> Case-1, Case-2, Case-3 : water saturated sand specimens (without hydrate)

- Case-1H, Case-2H, Case-3H contain CO₂-hydrate in the pores.
- > Initial mean effective stresses are set to be **1.0MPa**, **2.0MPa**, **or 3.0MPa**.
- Strain rate is set to be 0.1%/min among all the cases.

Stress-strain relationship & stress path

- Both stiffness and strength in hydrate-bearing sand are greater than that of watersaturated sand specimens.
- The stress paths in hydrate-bearing specimens express larger dilation than that of water-saturated specimens in each confining pressure.
- > The hydrate may act like additional small particles in the sand structure.

Scant modulus E₅₀ 6 Deviator stress q [MPa] Deviator stress q [MPa] 3 Case-1, e=0.74, $S_{u}^{H}=0.0$ % Case-2, e=0.72, $S_r^H=0.0$ % Case-3, e=0.72, $S_r^H=0.0$ % 0 10 20 5 15 5 10 15 20 0 0 Axial strain ε_a [%] Axial strain ε_a [%] 2.5 600 Case-1, $p_0=1.0$ MPa \blacksquare Case-1H, $p_0=1.0$ MPa Case-1, Case-1H, $p_0 = 1.0$ MPa \land Case-2, Case-2H, $p_0 = 2.0$ MPa Scant modulus E_{50} [MPa] Case-3, Case-3H, $p_0 = 3.0$ MPa Case-2, $p_0=2.0$ MPa \land Case-2H, $p_0=2.0$ MPa 500 **4** ase-3, p'_0 =3.0MPa • Case-3H, p'_0 =3.0MPa Ο 2.0 $E_{50}^{hydrate}/E_{50}^{sand}$ 400 $E_{50}^{hydrate}$ 1.5 300 E_{50}^{sand} 200 1.0 100 - [-] 0.5 10 20 30 40 50 10 20 30 40 50 0 0 Hydrate saturation S_{r}^{H} [%] Hydrate saturation S_r^H [%] 15/24

Excess P.W.P. vs strain, Stress ratio vs strain

- The reduction in the pore water pressure becomes larger in the specimen with hydrate.
- The P.W.P profile in the hydrate-bearing specimen behaves like a dense sand comparing the one without hydrate.

In the case of the same confining pressure, the maximum stress ratio of the hydrate-bearing specimen becomes larger than that of the water-saturated specimen.

In the critical state, the stress ratio settled at the same value, namely, 1.2, among all the cases.

Strength increase ratio vs Hydrate saturation

Increase ration in the maximum deviator stress

Increase ration in the maximum deviator stress seems to depend on both the **confining pressure** and the **hydrate saturation**.

> Not only sand particles but also gas hydrate might have the dependency on the confining pressure.

Increase ration in the maximum stress ratio

Increase ration in the maximum stress ration increases with increase in the hydrate saturation.

Summary – undrained triaxial tests –

In order to clarify the mechanical properties of gas hydrate-bearing sediments, we conducted undrained triaxial compression tests with different confining pressure and different hydrate saturation.

- Conclusions —

- 1. Both stiffness and strength of hydrate-bearing specimen becomes larger comparing with that of the specimens without hydrate.
- 2. In the case of hydrate-bearing sand, the excess pore water pressure is reduced largely. It may be because that the hydrate acts like additional small particles, and the apparent density of the sample increases.
- 3. Increase ratio in the maximum deviator stress may depend on both the confining pressure and hydrate the saturation.
- 4. Increase ratio in the maximum stress ratio increase with increase in the hydrate saturation.

Experimental conditions

Case-No.	Initial void ratio	Initial pore pressure	Effective confining pressure	Temperature	Hydrate saturation
	e_0	P _{ini} [MPa]	σ_c' [MPa]	$T[^{\circ}C]$	S_r^H
Case-0	0.69	2.0	0.1	18.0	0.0
Case-1	0.75	4.0	3.0	18.0	39.1
Case-2	0.75	4.0	3.0	18.0	42.2
Case-3	0.79	4.0	3.0	18.0	15.4
Case-4	0.76	6.0	3.0	18.0	32.1

Undrained conditions for water and gas

- Case-0 is the one without hydrate
- Case-1~Case-3: the initial pore pressure is 4.0MPa
- Case-6: the initial pore pressure is **6.0MPa**
- **Case-1~Case-4: the effective confining pressure are the same; 3.0MPa**

Experimental results -Pore pressure-

- I. In Case-0(without hydrate), any buildup of the pore pressure was not observed.
- II. The pore pressure is almost constant until one hour. After 1-hour the pore pressure begins to increase drastically, in Case-1~Case-4.
- III. In Case-2, increase rate of the pore pressure seems to be the largest. It is because that the hydrate saturation is the largest among the cases

Temperature-pore pressure path

Excess pore pressure and axial strain

- Tensile strain can be observed with increase in the excess pore pressure.
- When the pore pressure reaches at the maximum, the tensile strain also reached at the peak.
- Under undrained conditions, the hydrate dissociation may lead the large build up of the pore pressure, and decrease in the density of the sediments, simultaneously,

Summary – dissociation tests –

In order to investigate the fundamental behavior of the gas hydrates containing soils associated with hydrates dissociation ...

- 1. We have developed a temperature and pressure controlled triaxial apparatus.
- 2. This new triaxial cell can make the environment where gas hydrates can form, and we have carried out formation and dissociation tests using carbon dioxide hydrate.

— Conclusions —

- 1. The hydrates dissociation will cause <u>a significant increase in the pore</u> pressure, and result in <u>a significant reduction in the effective confining</u> pressure under undrained conditions.
- 2. The reduction in the effective confining pressure is a kind of liquefaction phenomena, which may lead to instability of the marine sediments.
- 3. The result indicates that both <u>increase in the pore pressure</u> and <u>decrease</u> <u>in the density of the sediments</u> might be caused simultaneously.

Thank you for your kind attention.